PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

ITO layer as an optical confinement for nitride edge-emitting lasers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of a numerical analysis of nitride-based edge-emitting lasers with an InGaN/GaN active region designed for continuous wave room temperature emission of green and blue light. The main goal was to investigate whether the indium thin oxide (ITO) layer can serve as an effective optical confinement improving operation of these devices. Simulations were performed with the aid of a self-consistent thermal-electrical-optical model. Results obtained for green- and blue-emitting lasers were compared. The ITO layer in the p-type cladding was found to effectively help confine the laser mode in the active regions of the devices and to decrease the threshold current density.
Rocznik
Strony
147--154
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Physics, Lodz University of Technology
  • Institute of Physics, Lodz University of Technology
  • Institute of Physics, Lodz University of Technology
autor
  • Institute of Physics, Lodz University of Technology
autor
  • Institute of Physics, Lodz University of Technology
  • Institute of Physics, Lodz University of Technology
  • Institute of Physics, Lodz University of Technology
Bibliografia
  • [1] Z.C. Feng, Handbook of Solid-State Lighting and LEDs, 1st ed., CRC Press, Boca Raton, 2017.
  • [2] D. Sizov et al., “Development of semipolar laser diode”, Phys. Status Solidi A 210 (3), 459–465 (2013).
  • [3] M.T. Hardy et al., “True green semipolar InGaN-based laser diodes beyond critical thickness limits using limited area epitaxy”, J. Appl. Phys. 114 (18), 183101 (2013).
  • [4] M. Murayama et al., “Watt-class green (530?nm) and blue (465?nm) laser diodes”, Phys. Status Solidi A 215 (10), 1700513 (2018).
  • [5] M.T. Hardy et al., “Indium-tin-oxide clad blue and true green semipolar InGaN/GaN laser diodes”, Appl. Phys. Lett., 103 (8), 081103 (2013).
  • [6] M. Kuc, R.P. Sarzała, and W. Nakwaski, “Thermal crosstalk in arrays of III-N-based Lasers”, Mater. Sci Eng. B 178 (20), 1395–1402 (2013).
  • [7] M. Kuc, R.P. Sarzała, S. Stańczyk, and P. Perlin, “Numerical investigation of an impact of a top gold metallization on output power of a p-up III-N-based blue-violet edge-emitting laser diode”, Opto-Electron. Rev. 23 (2), 131–136 (2015).
  • [8] M. Kuc et al., “Optical simulations of blue and green semipolar InGaN/GaN lasers”, Proc. SPIE 10532, 1053228 (2018).
  • [9] A.K. Sokół, Ł. Piskorski, M. Kuc, M. Wasiak, and R.P. Sarzała, “Concept of the CW GaN-based VECSEL”, Proc. SPIE 10515, 105150X (2018).
  • [10] T.E. Beechem et al., “Size dictated thermal conductivity of GaN”, J. Appl. Phys. 120 (9), 095104 (2016).
  • [11] L. Wang, J. Wen, C. Yang, and B. Xiong, “Potential of ITO thin film for electrical probe memory applications”, Sci. Technol. Adv. Mater. 19 (1), 791–801 (2018).
  • [12] M. Soltani, R. Soref, T. Palacios, and D. Englund, “AlGaN/AlN integrated photonics platform for the ultraviolet and visible spectral range”, Opt. Express 24 (22), 25415–25423 (2016).
  • [13] N. Watanabe, T. Kimoto, and J. Suda, “The temperature dependence of the refractive indices of GaN and AlN from room temperature up to 515◦ C”, J. Appl. Phys. 104 (10), 106101 (2008).
  • [14] J.-F. Carlin et al., “Progresses in III-nitride distributed Bragg reflectors and microcavities using AlInN/GaN materials”, Phys. Stat. Sol. B 242 (11), 2326–2344 (2005).
  • [15] M. Kuramoto, C. Sasaoka, N. Futagawa, M. Nido, and A.A. Yamaguchi, “Reduction of internal loss and threshold current in a laser diode with a ridge by selective re-growth (RiS-LD)”, Phys. Stat. Sol. A 192 (2), 329–334 (2002).
  • [16] Y. Oshima, T. Yoshida, K. Watanabe, and T. Mishima, “Properties of Ge-doped, high-quality bulk GaN crystals fabricated by hydride vapor phase epitaxy”, J. Cryst. Growth 312 (24), 3569–3573 (2010).
  • [17] D. Brunner et al., “Optical constants of epitaxial AlGaN films and their temperature dependence”, J. Appl. Phys. 82 (10), 5090–5096 (1997).
  • [18] Y. Oshima et al., “Thermal and optical properties of bulk GaN crystals fabricated through hydride vapor phase epitaxy with void-assisted separation”, J. Appl. Phys. 98 (10), 103509 (2005).
  • [19] C.J. Deatcher et al., “In situ optical reflectometry applied to growth of indium gallium nitride epilayers and multi-quantum well structures”, Semicond. Sci. Technol. 18 (4), 212–218 (2003).
  • [20] M.J. Bergmann and H.C. Casey Jr., “Optical-field calculations for lossy multiple-layer AlxGa1−xN/Inx Ga1−x N laser diodes”, J. Appl. Phys. 84 (3), 1196–1203 (1998).
  • [21] H.P. Zhou, W.Z. Shen, H. Ogawa, and Q.X. Guo, “Temperature dependence of refractive index in InN thin films grown by reactive sputtering”, J. Appl. Phys. 96 (6), 3199–3205 (2004).
  • [22] R. Sarzała et al., “Numerical self-consistent analysis of VCSELs”, Adv. Opt. Technol. 2012, 689519 (2012).
  • [23] S.S. Konoplev, K.A. Bulashevich, and S.Yu. Karpov, “From large-size to micro-LEDs: scaling trends revealed by modeling”, Phys. Stat. Sol. A 215 (10), 1700508 (2018).
  • [24] M.M. Mensi et al., “Direct measurement of nanoscale lateral carrier diffusion: toward scanning diffusion microscopy”, ACS Photonics 5 (2), 528–534 (2018).
  • [25] R. Aleksiejūnas et al., “Carrier transport and recombination in InGaN/GaN heterostructures, studied by optical four-wave mixing technique”, Phys. Stat. Sol. C 0 (7), 2686–2690 (2003).
  • [26] P. Ščajev, K. Jarašiūnas, S. Okur, Ü. Özgür, and H. Morkoç, “Carrier dynamics in bulk GaN”, J. Appl. Phys. 111 (2), 023702 (2012).
  • [27] F. Nippert, “Determination of recombination coefficients in InGaN quantum-well light-emitting diodes by small-signal timeresolved photoluminescence”, Jpn. J. Appl. Phys. 55 (5S), 05FJ01 (2016).
  • [28] F. Nippert, “Temperature-dependent recombination coefficients in InGaN light-emitting diodes: Hole localization, Auger processes, and the green gap”, Appl. Phys. Lett. 109 (16), 161103 (2016).
  • [29] J. Piprek, F. Römer, and B. Witzigmann, “On the uncertainty of the Auger recombination coefficient extracted from InGaN/GaN light-emitting diode efficiency droop measurements”, Appl. Phys. Lett. 106 (10), 101101 (2015).
  • [30] P. Tian, “Temperature-dependent efficiency droop of blue InGaN micro-light emitting diodes”, Appl. Phys. Lett. 105 (17), 171107 (2014).
  • [31] W.G. Scheibenzuber, “Recombination coefficients of GaN-based laser diodes”, J. Appl. Phys. 109 (9), 093106 (2011).
  • [32] M. Monavarian et al., “Explanation of low efficiency droop in semipolar (2021) InGaN/GaN LEDs through evaluation of carrier recombination coefficients”, Opt. Express 25 (16), 19343–19353 (2017).
  • [33] D.S. Meyaard et al., “On the temperature dependence of electron leakage from the active region of GaInN/GaN light-emitting diodes”, Appl. Phys. Lett. 99 (4), 041112 (2011).
  • [34] R. Zhou et al., “Steady-state recombination lifetimes in polar InGaN/GaN quantum wells by time-resolved photoluminescence”, Jpn. J. Appl. Phys. 58 (SC), 05FJ01 (2016).
  • [35] A. Dmitriev and A. Oruzheinikov, “The rate of radiative recombination in the nitride semiconductors and alloys”, J. Appl. Phys. 86 (6), 3241–3246 (1999).
  • [36] S.Yu. Karpov, “Effect of localized states on internal quantum efficiency of III-nitride LEDs”, Phys. Stat. Sol. RRL 4 (11), 320–322 (2010).
  • [37] Ł. Piskorski, L. Frasunkiewicz, and R.P. Sarzała, “Comparative analysis of GaAs- and GaSb-based active regions emitting in the mid-infrared wavelength range”, Bull. Pol. Ac.: Tech. 63 (3), 597–603 (2015).
  • [38] Y.C. Shen, G.O. Mueller, S. Watanabe, N.F. Gardner, A. Munkholm, and M.R. Krames, “Auger recombination in InGaN measured by photoluminescence”, Appl. Phys. Lett. 91 (14), 141101 (2007).
  • [39] M. Zhang, P. Bhattacharya, J. Singh, and J. Hinckley, “Direct measurement of auger recombination in In 0.1Ga0.9 N/GaN quantum wells and its impact on the efficiency of In0.1 Ga0.9 N/GaN multiple quantum well light emitting diodes”, Appl. Phys. Lett. 95 (20), 201108 (2009).
  • [40] H. Fu, Z. Lu, and Y. Zhao, “Analysis of low efficiency droop of semipolar InGaN quantum well light-emitting diodes by modified rate equation with weak phase-space filling effect”, AIP Adv. 6 (6), 065013 (2016).
  • [41] P. Li, Y. Zhao, X. Yi, and H. Li, “Effects of a reduced effective active region volume on wavelength-dependent efficiency droop of InGaN-based light-emitting diodes”, Appl. Sci. 8 (11), 2138 (2018).
  • [42] T. Swietlik, G. Franssen, R. Czernecki, M. Leszczynski, C. Skierbiszewski, I. Grzegory, T. Suski, P. Perlin, C. Lauterbach and U.T. Schwarz, “Mode dynamics of high power (InAl)GaN based laser diodes grown on bulk GaN substrate”, J. Appl. Phys. 101 (8), 083109 (2007).
  • [43] M. Malinverni et al., “InGaN laser diodes emitting at 500 nm with players grown by molecular beam epitaxy”, Appl. Phys. Express 8 (2), 022105 (2015).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc2e0d56-44dc-4ed4-b408-fb576e6ef7db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.