PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the influence of repetitive corrugation and straightening on the microstructure and mechanical properties of AA 8090 Al-Li alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper reports on the improvements in the mechanical properties of AA8090 Al-Li alloy subjected to repetitive corrugation and straightening (RCS). AA 8090 Al-Li alloy sheets were processed using different corrugation profiles (semi-circular, flat-groove and V-groove) at 300 °C, with a pressing velocity of 2.5 mm/s. This study shows that a V-grooved die favors grain refinement, e.g. a reduction in the average grain size from 65 μm to 12 μm after eight passes is achieved. Grain size distribution and misorientation between grain boundaries were studied using EBSD and TEM. The microstructures also appear to have more high-angle grain boundaries in the case of the specimen processed using the V-grooved die. The tensile strength increases with the number of passes, but drops when surface cracks appear after the 16th pass for a semi-circular die, the 12th pass for a flat grooved die and the 10th pass for a V-grooved die. In contrast, the hardness continues to increase with increasing number of passes. Ultra-fine-/nano-grains were present after the eighth pass in a sheet that was processed using a V-grooved die.
Rocznik
Strony
280--290
Opis fizyczny
Bibliogr. 28 poz., rys., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, College of Engineering Guindy, Anna University, Chennai 600025, India
autor
  • Department of Mechanical Engineering, College of Engineering Guindy, Anna University, Chennai 600025, India
  • Department of Mechanical Engineering, College of Engineering Guindy, Anna University, Chennai 600025, India
Bibliografia
  • [1] S. Bagherifard, R. Ghelichi, A. Khademhosseini, M. Guagliano, Cell response to nanocrystallized metallic substrates obtained through severe plastic deformation, ACS Applied Materials & Interfaces 6 (2014) 7963–7985.
  • [2] A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, et al., Severe plastic deformation (SPD) processes for metals, CIRP Annals – Manufacturing Technology 57 (2008) 716–735.
  • [3] Y.T. Zhu, T.C. Lowe, Observations and issues on mechanisms of grain refinement during ECAP process, Materials Science and Engineering: A 291 (2000) 46–53.
  • [4] A.P. Zhilyaev, S. Lee, G.V. Nurislamova, R.Z. Valiev, T.G. Langdon, Microhardness and microstructural evolution in pure nickel during high-pressure torsion, Scripta Materialia 44 (2001) 2753–2758.
  • [5] Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) Process, Acta Materialia 47 (1999).
  • [6] M. Noda, M. Hirohashi, K. Funami, Low temperature superplasticity and its deformation mechanism in grain refinement of Al-Mg alloy by multi-axial alternative forging, Materials Transactions 44 (2003) 2288–2297.
  • [7] Y. Beygelzimer, D.V. Orlov, V.N. Varyukhin, A new severe plastic deformation method: twist extrusion, in: Y.T. Zhu, T. G. Langdon, R.S. Mishra, S.L. Semiatin, M.J. Saran, T.C. Lowe (Eds.), Ultrafine Grained Materials II. Proceedings of a Symposium, Held During the 2002 TMS Annual Meeting I, Seattle, Washington, February 17–21, (2002) 297–304.
  • [8] Y. Xu, L. Hu, Y. Sun, J. Jia, J. Jiang, Q. Ma, Microstructure and mechanical properties of AZ61 magnesium alloy prepared by repetitive upsetting-extrusion, Transactions of Nonferrous Metals Society of China 25 (2015) 381–388.
  • [9] J.C. Kim, Y. Nishida, H. Arima, T. Ando, Microstructure of Al- Si-Mg alloy processed by rotary-die equal channel angular pressing, Materials Letters 57 (2003) 1689–1695.
  • [10] M. Richert, Q. Liu, N. Hansen, Microstructural evolution over a large strain range in aluminium deformed by cyclic-extrusion – compression, Materials Science and Engineering: A 260 (1999) 275–283.
  • [11] W. Guo, Q. Wang, B. Ye, H. Zhou, Microstructure and mechanical properties of AZ31 magnesium alloy processed by cyclic closed-die forging, Journal of Alloys and Compounds 558 (2013) 164–171.
  • [12] Y.T. Zhu, L. Alamos, T.C. Lowe, S. Fe, H. Jiang, J. Huang, United States Patent US006197129B1, 2001.
  • [13] Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: a wealth of challenging science, Acta Materialia 61 (2013) 782–817.
  • [14] N. Thangapandian, S.B. Prabu, The role of corrugation die parameters on the mechanical properties of aluminum alloy (AA 5083) processed by repetitive corrugation and straightening, Journal of Materials Science and Chemical Engineering (2015) 208–212.
  • [15] H.Y. Li, W. Kang, X.C. Lu, Effect of age-forming on microstructure, mechanical and corrosion properties of a novel Al–Li alloy, Journal of Alloys and Compounds 640 (2015) 210–218.
  • [16] T.H. Sanders, Coarsening of d0(Al3Li) Precipitates in Aluminum-Lithium Alloys. AD-A243 478, Naval Air Development Center Report, 1983.
  • [17] H. Ovri, E.T. Lilleodden, New insights into plastic instability in precipitation strengthened Al-Li alloys, Acta Materialia 89 (2015) 88–97.
  • [18] N. Llorca-Isern, P.A. Gonzalez, C.J. Luis, I. Laborde, Severe plastic deformation of a commercial aluminium-lithium alloy (AA8090) by equal channel angular pressing, Materials Science Forum 503–504 (2006) 871–876.
  • [19] C. Gao, Y. Luan, J.C. Yu, Y. Ma, Effect of thermo-mechanical treatment process on microstructure and mechanical properties of 2A97 Al-Li alloy, Transactions of Nonferrous Metals Society of China (English Edition) 24 (2014) 2196–2202.
  • [20] N. Thangapandian, S. Balasivanandha Prabu, K.A. Padmanabhan, Effects of die profile on grain refinement in Al–Mg alloy processed by repetitive corrugation and straightening, Materials Science and Engineering: A 649 (2016) 229–238.
  • [21] H. Sheikh, E. Paimozd, S.M. Hashemi, Work hardening of Duratherm 600 cobalt superalloy using repetitive corrugation and straightening process, Russian Journal of Non-Ferrous Metals 51 (2010) 59–61.
  • [22] G.G. Niranjan, U. Chakkingal, Deep drawability of commercial purity aluminum sheets processed by groove pressing, Journal of Materials Processing Technology 210 (2010) 1511– 1516.
  • [23] A. Kauffmann, J. Freudenberger, H. Klauß, V. Klemm, W. Schillinger, V. Subramanya Sarma, et al., Properties of cryo-drawn copper with severely twinned microstructure, Materials Science and Engineering: A 588 (2013) 132–141.
  • [24] B. Shen, L. Deng, X. Wang, A new dynamic recrystallisation model of an extruded Al-Cu-Li alloy during high-temperature deformation, Materials Science and Engineering: A 625 (2015) 288–295.
  • [25] C. Wang, F. Li, B. Chen, Z. Yuan, H. Lu, Severe plastic deformation techniques for bulk ultrafine-grained materials, Rare Metal Materials and Engineering 41 (2012) 941–946.
  • [26] A. Mishra, B. Kad, F. Gregori, M. Meyers, Microstructural evolution in copper subjected to severe plastic deformation: experiments and analysis, Acta Materialia 55 (2007) 13–28.
  • [27] E. Hosseini, M. Kazeminezhad, Stress-based model on work hardening and softening of materials at large strains: corrugation process of sheet, Journal of Materials Science 44 (2009) 1212–1218.
  • [28] N. Thangapandian, S. Balasivanandha Prabu, K.A. Padmanabhan, Effect of temperature and velocity of pressing on grain refinement in AA5083 aluminum alloy during repetitive corrugation and straightening process, Metallurgical and Materials Transactions A 47 (2016) 6374–6383.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc2db98b-d01e-4226-ab5c-77a21c3827bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.