PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

An evaluation of the efficiency of endpoint control on the correction of scoliotic curve with brace : A case study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of braces is one of the conservative treatment approaches recommended for scoliotic subjects. However, the main question posted here is how to improve the efficiency of braces to control the scoliotic curve or to decrease its progression. The aim of this study was to evaluate the efficiency of various boundary conditions (endpoint control) of brace on the correction of scoliotic curves. Method: CT scan images of a scoliotic subject, with double lumbar and thoracic curves, was used to produce 3d model of spine. The correction of spine (decrease in scoliotic curves) was determined following the use of transverse (lateral-to-medial direction) and the combination of transverse and vertical (upward-directed force, traction) forces on spine in Abaqus software. The effects of pelvic fixation (pelvic basket of a brace) on both sides (basket enclosed pelvic in both sides), on one side (basket enclosed the pelvis in only one side), and fixation of lumbar (part of the brace encircled the lumbar area) were evaluated in this study. Results: The results of this study showed that the effect of vertical forces (traction) was more than that of transverse force. Moreover, the combination of vertical and transverse forces on lumbar and thoracic curves correction was more than that of other conditions (only transverse forces). The best correction was achieved with lumbar fixation and with combination of vertical and transverse forces. Conclusions: The use the combination of vertical and transverse forces may be suggested to correct the scoliotic curve. Moreover, the efficiency of lumbar fixation in frontal plane seems to be more than pelvic fixation to correct scoliotic curve. The outputs of this study can be used to design new braces for scoliotic subjects.
Rocznik
Strony
3--10
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Rehabilitation Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
  • Department of Geotechnical Engineering, Tongji University, Shanghai, China
  • Department of Geotechnical Engineering, Tongji University, Shanghai, China
  • Department of Geotechnical Engineering, Tongji University, Shanghai, China
  • Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
  • Eastern Finland University, Kuopio, Finland
Bibliografia
  • [1] AHN U.M., AHN N.U., NALLAMSHETTY L., BUCHOWSKI J.M., ROSE P.S., MILLER N.H., KOSTUIK J.P., SPONSELLER P.D., The etiology of adolescent idiopathic scoliosis, Am. J. Orthop. (Belle Mead NJ), 2002, 31, 387–395.
  • [2] BROX J.I., LANGE J.E., GUNDERSON R.B., STEEN H., 2012. Good brace compliance reduced curve progression and surgical rates in patients with idiopathic scoliosis, Eur. Spine J., 2012, 21, 1957–1963.
  • [3] BUCKLEY J.M., LOO K., MOTHERWAY J., Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength, Bone, 2007, 40, 767–774.
  • [4] CANAVESE F., KAELIN A., Adolescent idiopathic scoliosis: Indications and efficacy of nonoperative treatment, Indian Journal of Orthopaedics, 2011, 45, 7–14.
  • [5] CARR W.A., MOE J.H., WINTER R.B., LONSTEIN J.E., Treatment of idiopathic scoliosis in the Milwaukee brace, J. Bone Joint Surg. Am., 1980, 62, 599–612.
  • [6] DANIELSSON A., WIKLUND I., PEHRSSON K., NACHEMSON A., Health-related quality of life in patients with adolescent idiopathic scoliosis: A matched follow up at least 20 years after treatment with brace or surgery, Euro Spine J., 2001, 10.
  • [7] DE MAUROY J., The new Lyon ARTbrace: Asymetrical rigid Torsional Brace.
  • [8] DEIMLING U., WAGNER U.A., SCHMITT O., Long-term effect of brace treatment on spinal decompensation in idiopathic scoliosis: a comparison of Milwaukee brace – Cheneau corset [in German], Z. Orthop. Ihre Grenzgeb., 1995, 133.
  • [9] GANJAVIAN M.S., BEHTASH H., AMERI E., KHAKINAHAD M., Results of Milwaukee and Boston braces with or without metal marker around pads in patients with idiopathic scoliosis, Acta Med. Iran, 2011, 49, 598–605.
  • [10] GIGNAC D., AUBIN C.E., DANSEREAU J., LABELLE H., Optimization method for 3D bracing correction of scoliosis using a finite element model, Eur. Spine J., 2000, 9, 185–190.
  • [11] GOLDBERG C.J., MOORE D.P., FOGARTY E.E., DOWLING F.E., Scoliosis: a review, Pediatric Surgery International, 2008, 24, 129–144.
  • [12] HSU J.D., MICHAEL J.W., FISK J.R., AAOS atlas of orthoses and assistive devices, 4th ed., American Academy of Orthopaedic Surgeons, Philadelphia: Mosby/Elsevier, 2008.
  • [13] JANICKI J.A., ALMAN B., Scoliosis: Review of diagnosis and treatment, Paediatrics & Child Health, 2007, 12, 771–776.
  • [14] KARIMI M.T., EBRAHIMI M.H., MOHAMMADI A., MCGARRY A., Evaluation of the influences of various force magnitudes and configurations on scoliotic curve correction using finite element analysis, Australasian Physical and Engineering Sciences in Medicine, 2016, 1–6.
  • [15] KARIMI M.T., RABCZUK T., Scoliosis conservative treatment: A review of literature, Journal of Craniovertebral Junction & Spine, 2018, 9, 3–8.
  • [16] LIAO Y.C., FENG C.K., TSAI M.W., CHEN C.S., CHENG C.K., OU Y.C., Shape modification of the Boston brace using a finite-element method with topology optimization, Spine (Phila Pa 1976), 2007, 32, 3014–9.
  • [17] MEIJER G.J.M., Development of a Non-Fusion Scoliosis Correction Device: Numerical Modelling of Scoliosis Correction. PhD, University of Twente, 2011.
  • [18] NATARAJAN R.N., WILLIAMS J.R., ANDERSSON G.B., Recent advances in analytical modeling of lumbar disc degeneration, Spine (Phila Pa 1976), 2004, 29, 2733–41.
  • [19] NEGRINI S., DONZELLI S., AULISA A.G., CZAPROWSKI D., SCHREIBER S., DE MAUROY J.C., DIERS H., GRIVAS T.B., KNOTT P., KOTWICKI T., LEBEL A., MARTI C., MARUYAMA T., O’BRIEN J., PRICE N., PARENT E., RIGO M., ROMANO M., STIKELEATHER L., WYNNE J., ZAINA F., 2016 SOSORT guidelines: orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth, Scoliosis and Spinal Disorders, 2018, 13, 3.
  • [20] PERIE D., AUBIN C.E., PETIT Y., BEAUSEJOUR M., DANSEREAU J., LABELLE H., Boston brace correction in idiopathic scoliosis: a biomechanical study, Spine (Phila Pa 1976), 2003, 28, 1672–1677.
  • [21] PERIE D., AUBIN C.E., PETIT Y., LABELLE H., DANSEREAU J., Personalized biomechanical simulations of orthotic treatment in idiopathic scoliosis, Clin. Biomech. (Bristol, Avon), 2004, 19, 190–5.
  • [22] PERIE D., SALES DE GAUZY J., HOBATHO M.C., Biomechanical evaluation of Cheneau-Toulouse-Munster brace in the treatment of scoliosis using optimisation approach and finite element method, Med. Biol. Eng. Comput., 2002, 40, 296–301.
  • [23] KARIMI M.T., RABCZUK T., KAVYANI M., Evaluation of the efficiency of the Cheneau brace on scoliosis deformity : A systematic review of the literature, Orthopade, 2018, 47, 198–204.
  • [24] VASILIADIS E., GRIVAS T.B., SAVVIDOU O., TRIANTAFYLLOPOULOS G., The influence of brace on quality of life of adolescents with idiopathic scoliosis, Stud. Health Technol. Inform., 2006, 123.
  • [25] WALLS M.C., RAJAGOPALAN S., 2013. Chapter 14 – Computed Tomographic Angiography, A2 – Creager M.A. [in:] J.A. Beckman, J. Loscalzo (Eds.), Vascular Medicine: A Companion to Braunwald’s Heart Disease (Second Edition), W.B. Saunders, Philadelphia 2013.
  • [26] WANG L., ZHANG B., CHEN S., LU X., LI Z.Y., GUO Q., A Validated Finite Element Analysis of Facet Joint Stress in Degenerative Lumbar Scoliosis, World Neurosurg., 2016, 95, 126–133.
  • [27] WANG W., BARAN G.R., BETZ R.R., SAMDANI A.F., PAHYS J.M., CAHILL P.J., The Use of Finite Element Models to Assist Understanding and Treatment For Scoliosis: A Review Paper, Spine Deformity, 2014, 2, 10–27.
  • [28] WEINSTEIN S.L., Idiopathic scoliosis in adolescence. Incidence and progression of untreated scoliosis, Orthopade, 1989, 18, 74–86.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc2d7139-89bc-471f-bdd6-2cfbf0a44527
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.