PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of thin films for application in photovoltaic cells

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: of this paper: The major aim of this paper was describing technical conditions of thermal evaporation method of organic thin film used as active layers for photovoltaic cells. Design/methodology/approach: The organic thin films have been obtained by thermal evaporation process from two sources. The two sources technique alleged to using the mixtures of two kinds of materials on deposited substrate and created the bulk p-n junction. By steering the source temperature the deposited rate of substrates has been changed which has led to changes in the share component in the layer. Findings: The obtained results describe the influence of evaporation process from two sources on optical properties and surface morphology of thin films which consist molecular materials - perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) and metal phthalocyanines (NiPc, TiOPc) blends. Research limitations/implications: The morphology and optical properties of thin films films made of organic materials MePc:PTCDA were described. This paper include also influence of physical vapor deposition process conditions on properties of thin films. Practical implications: The obtained results allowed to create the bulk p-n junction. The MePc:PTCDA thin films can be used in photovoltaic applications. Originality/value: The value of this paper is defining the optimal parameters of thermal evaporation from two sources for preparing MePc:PTCDA thin film with the best properties for photovoltaic applications. This paper describes the use of molecular materials for PVD technology. Results of these researches allowed to develop the technology of bulk heterojunction of molecular materials.
Rocznik
Strony
182--191
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Department of Physics, Center of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Sklodowska 34, 41-819 Zabrze, Poland
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Department of Physics, Center of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Sklodowska 34, 41-819 Zabrze, Poland
autor
  • Department of Physics, Center of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Sklodowska 34, 41-819 Zabrze, Poland
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] L.A. Dobrzański, Fundamentals of material science, Engineering materials with materials designed rudiments, Publishing house WNT, Warsaw, 2002.
  • [2] L.A. Dobrzański, M. Musztyfaga, Effect of the front electrode metallisation process on electrical parameters of a silicon solar cell, Journal of Achievements in Materials and Manufacturing Engineering 48/2 (2011) 115-144.
  • [3] M. Lipiński, Silicon nitride for photovoltaic application, Archives of Materials Science and Engineering 46/2 (2010) 69-87.
  • [4] L.A. Dobrzański, A. Drygała, P. Panek, M. Lipiński, P. Zięba, Development of the laser method of multicrystalline silicon surface texturization, Archives of Materials Science and Engineering 38/1 (2009) 5-11.
  • [5] J. Weszka, P. Jarka, M. Chwastek-Ogierman, B. Hajduk, Researches of topography and optical properties of the thin films NiPc/PTCDA donor acceptor couple, Journal of Achievements in Materials and Manufacturing Engineering 53/2 (2012) 81-88.
  • [6] Z.M. Jarzębski, Energia słoneczna. Konwersja fotowoltaiczna, PWN, Warszawa, 1990.
  • [7] M. Palewicz, A. Iwan, Polymeric solar cells, Polymers 56/2 (2011) 99-107 (in Polish).
  • [8] M.A. Green, Third generation photovoltaics: solar cells for 2020 and beyond, Physica E 14 (2002) 65-70.
  • [9] G. Dennler, N.S. Sariciftci, C.J. Brabec, Conjugated polymer-based organic solar cells, in: Semiconducting Polymers: Chemistry, Physics and Engineering, Vol. 1, John Wiley and Sons, 2006.
  • [10] H. Hoppe, N.S. Sariciftci, Organic solar cells: an overview, Journal of Materials Research 19/7 (2004) 1924-1945.
  • [11] F.C. Krebs, Fabrication and processing of polymer solar cells: a review of printing and coating techniques, Solar Energy Materials and Solar Cells 93/4 (2009) 394-412.
  • [12] G. Dennler, N.S. Sariciftci, Flexible conjugated polymer-based plastic solar cells: from basics to applications, Proceedings of the IEEE 93/8 (2005) 1429-1439.
  • [13] R. Aïcha, B. Ratiera, F. Tranvan, F. Goubard, C. Chevrot, Small molecule organic solar cells based on phthalocyanine/perylene-carbazole donor-acceptor couple, Thin Solid Films 516/20 (2008) 7171-7175.
  • [14] B. Hajduk, J. Weszka, B. Jarząbek, J. Jurusik, M. Domański, Physical properties of polyazomethine thin films doped with iodine, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 67-70.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc26d770-6ddd-4264-b019-c9e1defdb970
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.