PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Influence of Copper Powder Morphology on Mechanical Properties of Low-Pressure Cold Sprayed Coatings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermal spraying methods are commonly used to regenerate damaged surface or change materials surface properties. One of the newest methods is cold spraying, where coating is deposited of material in the solid state. Therefore shape and size of the powder particles are very important parameters. The article presents the influence of copper powder morphology on mechanical properties of the coatings (adhesion, hardness, Young’s modulus) deposited with the Low Pressure Cold spraying method on the AA1350 aluminium alloy substrate. The coatings were deposited using two commercially available copper powders with spherical and dendritic morphology and granulation of -40+10 μm. The bond strength of coatings was determined with the pull off method, the hardness with the Vickers method at load of 2.94 N, while the Young’s modulus through measurement of nanoindentation. Microstructure of the coatings was analysed using the light and scanning electron microscopy (SEM). Shape of the powder influences mechanical properties of the coating significantly. The coatings deposited with dendritic powder had low mechanical properties, hardness of the 81 HV0.3 order and adhesion of about 4 MPa. However changing powder morphology to spherical increased hardness of the coating to 180 HV0.3 and adhesion to 38.5 MPa.
Twórcy
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Department of Vehicle Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Department of Vehicle Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Department of Metal Forming, Welding and Metrology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Department of Metal Forming, Welding and Metrology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] L. Pawłowski, The Science and Engineering of Thermal Spray Coatings, New York: John Wiley & Sons Ltd. (2008).
  • [2] R.S. Parmar, Welding Engineering and Technology, Khanna Publishers (2010).
  • [3] J. Davis, Handbook of Thermal Spray Technology, printed in the United States of America: ASM International (2004).
  • [4] Struers Company Application Notes. Metallographic preparation of thermal spray coatings.
  • [5] M. Oksa, E. Turunen, T. Suhonen, T. Varis, S. P. Hannula, Optimization and Characterization of High Velocity Oxy-fuel Sprayed Coatings: Techniques, Materials, and Applications, Coatings 1, 17-52 (2011).
  • [6] A. Ambroziak, P. Białucki, A. Porochoński, Chosen properties of coatings obtained by thermal spraying, Eksploatacja i Niezawodność - Maintenance and Reliability 26, 42-47 (2005).
  • [7] V. Champagne, The Cold Spray Materials Deposition Process: Fundamentals and Applications, Cambridge: Woodhead Publishing Ltd. (2007).
  • [8] R. G. Maev, V. Leshchynsky, Introduction to Low Pressure Gas Dynamic Spray, Weinheim: Wiley-VCH Verlag GmbH & Co. Kgaa (2008).
  • [9] A. Papyrin, Cold Spray Technology, Oxford: Elsevier (2007).
  • [10] O. Sharifahmadian, H. R. Salimijazi, M. H. Fathi, J. Mostaghimi, L. Pershin, Relationship between surface properties and antibacterial behavior of wire arc spray copper coatings, Surface & Coatings Technology 233, 74-79 (2013).
  • [11] M. Musztyfaga-Staszuk, A. Czupryński, M. Kciuk, Investigation of Mechanical and Anti-Corrosion Properties of Flame Sprayed Coatings , Advances in Materials Science 18, 42-53 (2019).
  • [12] T. Dyl, Analysis of the possibility of applying of alloy and composite coatings after plastic working in shipbuilding, Advances in Materials Science 14, 82-91 (2014).
  • [13] M. Nicolaus, K. Möhwald, H. J. Maier, Regeneration of high pressure turbine blades. Development of a hybrid brazing and aluminizing process by means of thermal spraying, Procedia CIRP 59, 72-76 (2017).
  • [14] Z. Liu, H. Wang, M. J. R. Hach, X. Chu, E. Irissou, Y. Zou, Prediction of heterogeneous microstructural evolution in cold-sprayed copper coatings using local Zener-Hollomon parameter and strain, Acta Materialia, 2020, Article in Press.
  • [15] P. P. Sudharshan, R. D. Srinivasa, S. Joshl, G. Sundararajan, Effect of process parameters and heat treatments on properties of cold sprayed copper coatings, Journal of Thermal Spray Technology 16, 425-434 (2007).
  • [16] S. Singh, H. Singh, S. Chaudhary, R. K. Buddu, Effect of substrate surface roughness on properties of cold-sprayed copper coatings on SS316L steel, Surface & Coatings Technology 389, 125619 (2020).
  • [17] M. Winnicki, A. Małachowska, A. Baszczuk, M. R Utkowska-Gorczyca, D. Kukla, M. Lachowicz, A. Ambroziak, Corrosion protection and electrical conductivity of copper coatings deposited by low-pressure cold spraying, Surface & Coatings Technology 318, 90-98 (2017).
  • [18] S. Singh, P. Singh, H. Singh, R. K. Buddu, Characterization and comparison of copper coatings developed by low pressure cold spraying and laser cladding techniques, Materials Today: Proceedings 18, 830-840 (2019).
  • [19] F. S. da Silva, N. Cinca, S. Dosta, I. G. Cano, J. M. Guilemany, C. S. A. Caires, A. R. Lima, C. M. Silva, S. L. Oliveira, A. R. L. Caires, A. V. Benedetti, Corrosion resistance and antibacterial properties of copper coating deposited by cold gas spray, Surface & Coatings Technology 361, 292-301 (2019).
  • [20] C. Borchers, F. Gärtner, T. Stoltenhoff, H. Assadi, H. Kreye, Microstructural and Macroscopic Properties of Cold Sprayed Copper Coatings, Journal of Applied Physics 93, 10064-10070 (2003).
  • [21] S. Yin, X. Wang, X. Suo, H. Liao, Z. Guo, W. Li, Ch. Coddet, Deposition behavior of thermally softened copper particles in cold spraying, Acta Materialia 61, 5105-5118 (2013).
  • [22] S. Kumar, G. Bae, CH Lee, Deposition characteristics of copper particles on roughened substrates through kinetic spraying, Applied Surface Science 255, 3472-3479 (2009).
  • [23] F. A. Calvo, A. Ureng, J. M. Gomez De Salazar, F. Molleda, Special features of the formation of the diffusion bonded joints between copper and aluminium, Journal of Materials Science 23, 2273-2280 (1988).
  • [24] I. Manna, J. D. Majumdar, Enhanced kinetics of diffusion coating of aluminium on copper by boundary diffusion, Journal of Materials Science Letters 12, 920-922 (1993).
  • [25] T. Kairet, G. Di Stefano, M. Degrez, F. Campana, J. P. Janssen, Comparison Between Coatings From Two Different Copper Powders: Mechanical Properties, Hardness and Bond Strength, Thermal Spray (2006): Building On 100 Years of Success, B. Marple, M. Hyland, Y. C. Lau, R. Lima, J. Voyer (Eds.), May 15-18 (Seattle, Washington, USA), ASM International.
  • [26] F. Gärtner, T. Stoltenhoff, J. Voyer, H. Kreye, S. Riekehr, M. Kocak, Mechanical properties of cold-sprayed and thermally sprayed copper coatings, Surface and Coatings Technology 200, 770-782 (2006).
  • [27] T. Stoltenhoff, C. Borchers, F. Gärtner, H. Kreye, Microstructures and key properties of cold-sprayed and thermally sprayed copper coatings, Surface & Coatings Technology 200, 4947-4960 (2006).
  • [28] W. Y. Li, Ch. J. Li, H. Liao, Effect of Annealing Treatment on the Microstructure and Properties of Cold-Sprayed Cu coating, Journal of Thermal Spray Technology 15, 206-211 (2006).
  • [29] O. T. Azegul, O. Meydanoglu, E. Sabri Kayali, Surface modification of electrical contacts by cold gas dynamic spraying process, Surface and Coatings Technology 236, 159-165 (2013).
  • [30] H. Koivuluoto, J. Lagerbom, M. Kylmalahti, P. Vuoristo, Microstructure and Mechanical Properties of Low-Pressure Cold-Sprayed (LPCS) Coatings, Journal of Thermal Spray Technology 17, 721-727 (2008).
  • [31] H. Koivuluoto, P. Vuoristo, Effect of Powder Type and Composition on Structure and Mechanical Properties of Cu+Al2O3 Coatings Prepared by using Low-Pressure Cold Spray Process, Journal of Thermal Spray Technology 19, 1081-1092 (2010).
  • [32] M. Kulmala, P. Vuoristo, Influence of process conditions in laser-assisted low-pressure cold spraying, Surface and Coatings Technology 202, 4503-4508 (2008).
  • [33] H. Koivuluoto, M. Honkanen, P. Vuoristo, Cold-sprayed copper and tantalum coatings - detailed FESEM and TEM analysis, Surface and Coatings Technology 204, 2353-2361 (2010).
  • [34] H. Koivuluoto, J. Lagerbom, P. Vuoristo, Microstructural Studies of Cold Sprayed Copper, Nickel, and Nickel-30% Copper Coatings, Journal of Thermal Spray Technology 16, 448-497 (2007).
  • [35] Standard PN-EN 582. Thermal spraying. Determination of tensile adhesive strength. Standard Association: Poland (1996).
  • [36] W. C. Oliver, G. P. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research 7, 1564-1583 (1992).
  • [37] G. Sundararajan, Naveen M. Chavan, S. Kumar, The elastic modulus of cold spray coatings: Influence of intersplat boundary cracking, Journal of Thermal Spray Technology 22, 1348-1357 (2013).
  • [38] P. C. King, G. Bae, S. H. Zahiri, M. Jahedi, Ch. Lee, An experimental and finite element study of cold spray copper impact onto two aluminum substrates, Journal of Thermal Spray Technology 19, 620-634 (2010).
  • [39] R. Huang, M. Sone, W. Ma, H. Fukanuma, The effects of heat treatment on the mechanical properties of cold-sprayed coatings, Surface & Coatings Technology 261, 278-288 (2015).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc25a640-f6d4-4ef1-9b9c-113bd6be1d4a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.