PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Influence of Geometrical Parameters of a Tool on its Wear in Selected Technological Processes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Forecasting the durability of tools for various technological processes, determining the dominant destructive mechanisms or their impact on the "life time" of the tool is very important. In the paper presents the research on tools wear of different geometric parameters in selected plastic working processes were presented. Numerical calculations of the tool wear in the process of forward extrusion and drawing were carried out using the MSC MARC program, based on the Finite Element Method. In order to determine the amount of wear of dies and drawing dies, the Archard model was applied. The model was implemented in the FEM-based program. As a result of the research, the areas on the surface of tools, which are particularly exposed to significant wear were determined, depending on their geometry.
Słowa kluczowe
EN
wear   extrusion   drawing   tool  
Twórcy
  • Department of Computer Engineering in Management, Rzeszów University of Technology, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Fu M.W., Yong M.S., Muramatsu T. Die fatigue life design and assessment via CAE simulation. International Journal of Advanced Manufacturing Technology, 2008, 35, 843-851.
  • 2. Stahlberg U. J, Hallstrom A. Comparison between two wear models. Journal of Materials Processing Technology, 1999, 87(1-3), 223-229.
  • 3. Altan T., Knoerr M. Application of the 2D finite element method to simulation of cold-forging processes. Journal of Materials Processing Technology, 1992, 35(3-4), 275-302.
  • 4. Bramley A.N., Lord J.D., Beeley P.R., Davies B., J. Determination of wear resistance of hot work die materials. Annals of CIRP, 1989, 38(1), 231-234.
  • 5. Lee GA, Im YT. Finite-element investigation of the wear and elastic deformation of dies in metal forming. Journal of Materials Processing Technology, 1999, 89–90, 123-127.
  • 6. Kang J.H., Park I.W., Jae J.S., Kang S.S. A study on a die wear model considering thermal softening (I), construction of the wear mode. Journal of Materials Processing Technology, 1996, 96, 53-58.
  • 7. Kang J.H., Park, I.W., Jae J.S., Kang S.S. A study on a die wear model considering thermal softening (II), application of the suggested wear model. Journal of Materials Processing Technology, 1999, 94, 183-188.
  • 8. Kragelsky, I.V., Dobychin M.N., Mombalov V.S. Friction and Wear Calculation Methods. Pergamon Press. New York, 1982.
  • 9. Lee R.S., Jou J.L. Application of numerical simulation for wear analysis of warm forging die. Journal of Materials Processing Technology, 2003, 140(1-3), 43-48.
  • 10. Lepadatu D., Hambli R., Kobi A., Barreau A. Statistical investigation of die wear in metal International Journal of Advanced Manufacturing Technology, 2006, 28(3), 272-278.
  • 11. Painter B., Shivpuri R., Altan T. Prediction of die wear during hot-extrusion of engine valves, Journal of Materials Processing Technology, 1996, 59, 132-143.
  • 12. Sińczak J., Łukaszek – Sołek A., Bednarek S. Ocena trwałości narzędzi w procesie wyciskania elementów cięgłowych i zderzakowych na przykładzie zderzaka kolejowego. Mechanik, 2008,8-9,694-699.
  • 13. Sobis T., Engel U., Geiger M. A theoretical study on wear simulation in metal forming processes. Journal of Materials Processing Technology, 1992, 34, 233-240.
  • 14. Hild R., Bergs T., Mattfeld P., Trauth D., Klocke F., Hoffmann D.C., Kruppe N.C., Brögelmann T., Bobzin K. Analysis of wear phenomena during forward extrusion under dry friction conditions. Wear, 2019, 426-427, 1362-1370.
  • 15. Zhang, C. An Investigation of die wear behavior during aluminum alloy 7075 tube extrusion. Journal of Tribology, 2012, 135(1), 11602-11602.
  • 16. Björk, T., Westergård R., Hogmark S. Wear of surface treated dies for aluminium extrusion — a case study. Wear, 2001, 249(3–4), 316-323.
  • 17. Szota P., Mróz S., Stefanik A. Numeryczne modelowanie zużycia ciągadeł podczas ciągnienia drutu okrągłego. Hutnik-Wiadomości Hutnicze, 2001, 1, 138-141.
  • 18. Nowotyńska I., Kut S. Prognozowanie wielkości zużycia ciągadła w zależności od przeciwciągu podczas ciągnienia drutu okrągłego w ujęciu MES. Hutnik-Wiadomości Hutnicze, 2012, 7, 488-492.
  • 19. Wistreich J.G. The fundamentals of wire drawing. International Materials Reviews, 1958, 3(10), 97-141.
  • 20. Shatynski S.R, Wright R.N. Die wear during wire drawing operations. Wire Technologies, 1979, 7, 59-62.
  • 21. Kim T.H, Kim B.M., Choi J.C. Prediction of die wear in the wire-drawing process, Journal of Materials Processing Technology, 1997, 65, 11-17.
  • 22. Pirso J., Letunovits S., Viljus M. Friction and wear behavior of cemented carbides. Wear, 2004, 257(34), 257-265.
  • 23. Lee K-H., Lee S-K., Kim B-M. Advanced simulation of die wear caused by wire vibrations during wire-drawing process. Transactions of Nonferrous Metals Society of China, 2012, 22(7), 1723-1731.
  • 24. Hollinger S., Depraetere E., Giroux O. Wear mechanism of tungsten carbide dies during wet drawing of steel tire cords. Wear, 2003, 255(7-12), 1291-1299.
  • 25. Lee S.K, Ko D.C, Kim B.M. Pass schedule of wire drawing process to prevent delamination for high strength steel cord wire. Mater & Design, 2009, 30(8), 2919-2927.
  • 26. Deng JX., Yang XF., Wang JH. Wear mechanisms of Al2O3/Tic/Mo/Ni ceramic wire-drawing dies. Materials Science and Engineering A, 2006, 424(1-2), 347-354.
  • 27. Lancaster J.K. The influence of substrate hardness on the formation and endurance of molybdenum disulphide films. Wear, 1967, 10(2), 103-117.
  • 28. Łatka L., Szala M., Macek M., Branco R. Mechanical properties and sliding wear resistance of suspension plasma sprayed YSZ coatings. 2020, 14(4), 307-314.
  • 29. Archard J.F. Contacts and rubbing of flat surfaces. Journal of Applied Physics, 1953, 24, 981-988.
  • 30. Holm R. Electric contacts. Stockholm, Almqvist and Wiksells, 1946.
  • 31. Gronostajski Z., Hawryluk M. The main aspects of precision forging. Archives of Civil and Mechanical Engineering, 2008, 8(2), 39-57.
  • 32. Gillstrom P., Jarl M. Wear of die after drawing of pickled or reverse bent wire rod. Wear, 2007, 262, 858–867.
  • 33. MSC Software, MSC. Marc Volume B, Element Library, Version 2014.
  • 34. Łuksza J. Elementy ciągarstwa. Uczelniane Wydawnictwa Naukowo-Dydaktyczne. Kraków 2001.
  • 35. https,//js-metals.pl/stopy-odlewnicze/10.02.2021
  • 36. Sas-Boca I.M., Tintelecan M. Pop M., Dana M.P, Ilutiu-Varvara D-A, Mihu A.M. The Wire Drawing Process Simulation and the Optimization of Geometry Dies. Procedia Engineering, 2017, 181, 187-192.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc22f52d-be0a-49d2-966f-474960d0ffc6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.