Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Knotweeds, Reynoutria japonica (RJ) and R. sachalinensis (RS) are invasive species that strongly interfere with the soil environment and disrupt the biogeochemical cycles of many chemical elements. This paper analyses the content of C, N, P, K, Na, Mg, Ca, Al, Fe, Mn, Zn, Ni, Cu, Cd, Cr and Pb in the above-ground biomass of RJ and RS and in the soil (0–15 cm) in order to assess the accumulation properties of knotweed. Studies conducted in northern Poland showed statistically significant (p<0.05) differences in the content of Na in the soil of the studied knotweed. The elemental composition of the leaves and stems showed a good supply of macronutrients and increased concentrations of some trace elements. The leaves of RJ and RS were shown to be good bioaccumulators of N, K, Na, Mg, Ca, P, Mn, Zn, Ni, Cu and Cd, and the stems of N, K, Na, Ca, Ni, Cd, Cr and Pb. Based on the values of bioconcentration factors (BCF), the similarity between the studied knotweeds concerning Mn, Cu and Cr in the leaf/soil relation and Al, Fe, Cu, Cd, Cr and Pb in the stem/soil relation was demonstrated. The highest mobility from stems to leaves expressed by the translocation factor (TF) was exhibited by Mn and Mg, and the lowest by Cr. Despite the low content in the soil, RJ and RS leaves and stems accumulated significant amounts of trace elements, which indicates their phytoextractive properties.
Czasopismo
Rocznik
Tom
Strony
306--316
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
- Institute of Geography, Department of Environmental Chemistry and Toxicology, Pomeranian University in Słupsk, ul. Arciszewskiego 22b, 76-200 Słupsk, Poland
autor
- Department of Botany and Nature Protection, Institute of Biology, Pomeranian University in Słupsk, 22b ul. Arciszewskiego, 76-200 Słupsk, Poland
Bibliografia
- 1. Barney J.N., Tharayil N., Di Tommaso A., Bhowmik P. 2006. The biology of invasive alien plants in Canada. 5. Polygonum cuspidatum Sieb. and Zucc. [=Fallopia japonica (Houtt.) Ronse Decr.], Canadian Journal of Plant Science, 86, 887–905.
- 2. Bradley B.A., Blumenthal D.M., Wilcove D.S. Ziska L.H. 2010. Predicting plant invasions in an era of global change. Trends in Ecology and Evolution, 25, 310. http://dx.doi.org/10.1016/j.tree.2009.12.003
- 3. Cvejič R., Klages S., Pintar M., Resman L., Slatnar A., Mihelič R. 2021. Invasive plants in support of urban farming: Fermentation-based organic fertilizer from Japanese Knotweed. Agronomy, 11, 1232. DOI:10.3390/agronomy11061232
- 4. Dassonville N., Vanderhoeven S., Gruber W., Meerts P. 2007. Invasion by Fallopia japonica increases topsoil mineralnutrientconcentration,Ecoscience,14,230–240. https://doi.org/10.2980/1195-6860(2007)14[230:IBFJIT]2.0.CO;2
- 5. Diatta J., Grzebisz W., Apolinarska K. 2003. A study of soil pollution by heavy metals in the city of Poznań (Poland) using dandelion (Taraxacum officinale Web) as a bioindicator. Electronic Journal of Polish Agricultural Universities 6, 2, 1–9. http://www.ejpau.media.pl/volume6/issue2/environment/art-01.html.
- 6. Ehrenfeld J.G. 2003. Effect of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6, 503–523. DOI:10.1007/s10021-002-0151-3
- 7. Hulina N., Dumija L. 1999. Ability of Reynoutria japonica Houtt. (Polygonaceae) to accumulate heavy metals. Periodicum Biologarum, 101, 3, 233–235.
- 8. Kabata-Pendias A., Pendias H. 1999. Biogeochemistry of trace elements. Polish Scientific Publishing, Warszawa (2001) (in Polish)
- 9. Kirschenstein M., Baranowski D. 2008. Annual precipitation and air temperature fluctuations and change tendencies in Słupsk. Dokumentacja Geograficzna, 37, 76–82 (in Polish)
- 10. Lavoie C. 2017. The impact of invasive knotweed species (Reynoutria spp.) on the environment: review and research perspective. Biological Invasions, 19(8), 2319–2337. https://doi.org/10.1007/s10530-017-1444-y
- 11. Lerch S., Sirguey C., Michelot-Antalik A., Jurjanz S. 2022. Accumulation of metallic trace elements in Reynoutria japonica: A risk assessment for plant biomass valorization. Environmental Science of Pollution Research, 29, 67390–67401. https://doi.org/10.1007/s11356-022-20485-7
- 12. Lewandowska A.U., Falkowska L.M. 2013. Sea salt in aerosols over the southern Baltic.Part 2. The neutralizing properties of sea salt and ammonia. Oceanologia, 55, 2, 299–318. DOI:10.5697/oc.55-2.299
- 13. MacNaeidhe F. 1995. Procedures and precautions used in sampling techniques and analysis of trace elements in plant matrices. Science of The Total Environment, 176, 25– 31.
- 14. Mandák B., Pyšek P., Bímová K. 2004. History of the invasion and distribution of Reynoutria taxa in the Czech Republic: a hybrid spreading faster than its parents. Preslia (Prague) 76, 15–64.
- 15. Michalet S., Rouifed S., Pellassa-Simon T., Fusade-Boyer M., Meiffren G., Rouifed S., Nazaret S., Piola F. 2017. Tolerance of Japanese knotweed s.l. to soil artificial polymetallic pollution: Early metabolic responses and performance during vegetative multiplication. Environmental Science of Pollution Research, 24, 20897–20907. DOI: 10.1007/s11356-017-9716-8
- 16. Michelot-Antalik A, Morelatto R, Lerch S, Jacquot G, Wieser L, Montagne P. 2016. Establishing ecological strategies to limit the expansion of Reynoutria japonica: Effects on vegetation and soil restorations. In Sfecologie 2016, International Conference on Ecological Sciences, Ed. Société Française d’Ecologie, 24–28 October 2016, Marseille, France.
- 17. Mihali C., Dippong T., Butean C., Goga F. 2017. Heavy metals and as content in soil and in plants in the Baia Mare mining and metallurgical area (NW of Roumania). Revue Roumaine de Chimie, 62(4–5), 373–379. https://revroum.lew.ro/wp-content/uploads/2017/4/Art%2007.pdf
- 18. Murrell C., Gerber E., Krebs C., Parepa M., Schaffner U., Bossdorf O. 2011. Invasive knotweed affects native plants through allelopathy. American Journal of Botany, 98, 38–43. DOI:10.3732/ajb.1000135
- 19. Norouzi S., Khademi H., Faz Cano A., Acosta J.A. 2015. Using plane tree leaves for biomonitoring of dust borne heavy metals: a case study from Isfahan, Central Iran. Ecological Indicators, 57, 64–73. DOI:10.1016/j.ecolind.2015.04.011
- 20. Ostrowska A., Porębska U. 2002. Mineral composition of plants, interpretation and use in environmental protection. IOŚ, Warszawa 1–164 (in Polish)
- 21. Parihar J.K., Pariha P.K., Pakade Y.B., Katnoria J.K. 2021. Bioaccumulation potential of indigenous plants for heavy metal phytoremediation in rural areas of Shaheed Bhagat Singh Nagar, Punjab (India). Environmental Science and Pollution Research, 28, 2426–2442. DOI:10.1007/s11356-020-10454-3
- 22. Parzych A. 2011. Contents of nitrogen and phosphorus compounds in groundwaters of selected forestassociations in the Słowiński National Park. Archives of Environmental Protection, 37(4), 95–105.
- 23. Parzych A., Astel A., Zduńczyk A., Surowiec T. 2016. Evaluation of urban environment pollution based on the accumulation of macro- and microelements in epiphytic lichens. Journal of Environmental Science and Health, Part A, 51(4), 297–308. DOI:10.1080/10934529.2015.1109387
- 24. ParzychA., Jonczak J., Sobisz Z. 2017. Bioaccumulation of macronutrients in the herbaceous plants of mid-forest spring niches. Baltic Forestry, 23(2), 384–393.
- 25. Parzych A., Jonczak J., Sobisz Z. 2018. Bioaccumulation of macro- and micronutrients in herbaceous plants of headwater areas – a case study from northern Poland. Journal of Elementology, 23(1), 231–245. DOI:10.5601/jelem.2017.22.1.1415
- 26. Parzych A., Jonczak J. 2014. Pine needles (Pinus sylvestris L.) as bioindicators in the assessment of urban environmental contamination with heavy metals. Journal of Ecological Engineering, 15(3), 29–38. DOI:10.12911/22998993.1109119
- 27. Rahmanov O., Czylok A., Orczewska A., Magier L., Paruse T. 2014. Chemical Composition of the leaves of Reynoutria japonica Houtt. and soil features in polluted areas. Central European Journal of Biology, 9(3), 320–330. https://doi.org/10.2478/s11535-013-0267-9
- 28. Rahmonov O., Banaszek J., Pukowiec-Kurda K. 2019. Relationships between heavy metal concentrations in Japanese Knotweed (Reynoutria Japonica Houtt.) tissues and soil in urban parks in southern Poland. Earth and Environmental Science, 221, 012145. DOI:10.1088/1755-1315/221/1/012145
- 29. Regulation by the Minister of Environment dated 1 September 2016, poz. 1395th. (in Polish). http://isap.sejm.gov.pl/isap.nsf/home.xsp
- 30. Shi J., Zhang G., An H., Yin W., Xia X. 2017. Quantifying the particulate matter accumulation on leaf surfaces of urban plants in Beijing, China. Atmospheric Pollution Research, 8(5), 836–842. http://dx.doi.org/10.1016/j.apr.2017.01.011
- 31. Solon J., Borzyszkowski J., Bidłasik M., Richling A., Badora K., Balon J., Brzezińska-Wójcik, T., Chabudziński Ł., Dobrowolski, R., Grzegorczyk I., Jodłowski M., Kistowski M., Kot R., Krąż P., Lechnio J., Macias A., Majchrowska A., Malinowska E. Migoń P., Myga-Piątek U., Nita J., Papińska E., Rodzik J., Strzyż M., Terpiłowski S., Ziaja W.2018. Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geographia Polonica, 91(2), 143–170. https://doi.org/10.7163/GPol.0115
- 32. Sołtysiak J., Berchová-Bímová K., Vach M., Brej T. 2011. Heavy metals content in the Fallopia genus in Central European Cities – study from Wroclaw and Prague, Acta Botanica Silesiaca, 7, 209–218.
- 33. Stefanowicz A.M., Majewska M.L., Stanek M., Nobis M., Zubekw S. 2018. Differential influence of four invasive plant species on soil physicochemical properties in a pot experiment. Journal of Soils Sediments, 18, 1409–1423. https://doi.org/10.1007/s11368-017-1873-3
- 34. Tokarska-Guzik B., Bzdęga K., Knapik D., Jenczała G. 2006. Changes in plant species richness in some riparian plant communities as a result of their colonisation by taxa of Reynoutria (Fallopia). Biodiversity Research and Conservation, 1–2, 123–130.
- 35. Vichotová N., Šerá B. 2008. Allelopathic properties of knotweed rhizome extracts. Plant Soil and Environment, 54, 7, 301–303. https://doi.org/10.17221/420-pse
- 36. Vidican R., Mihăiescu T., Pleşa A., Mălinas A., Pop B.A. 2023. Investigations concerning heavy metals dynamics in Reynoutria japonica Houtt.- Soil interactions. Toxics, 11, 323. https://doi.org/ 10.3390/toxics11040323
- 37. Widłak M. 2011. The toxicity of aluminium environmental challenge (reviev of literature). Rocznik Świętokrzyski. Ser. B, Nauki Przyrodnicze, 32, 131–140 (in Polish)
- 38. Wierzbicka M. 2015. Plant defense against heavy metals. [In:] Ecotoxicology. Plants, soil, metals [Eds.] Wierzbicka M. Wydawnictwo Uniwersytetu Warszawskiego, Warszawa pp. 569 (in Polish)
- 39. Zaakour F., Kholaiq M., Khouchlaa A., El Mjiri I., Rahimi A., Saber N. 2023. Assessment of heavy metal contamination using pollution index, geoaccumulation index, and potential ecological risk index in agricultural soil – a case study in the Coastal Area of Doukkala (Morocco). Ecological Engineering & Environmental Technology, 24(2), 38– 44. https://doi.org/10.12912/27197050/157037
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc1fb40d-a364-4c77-a1b0-639fc791a931
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.