PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some aspects of generalized Zbăganu and James constant in Banach spaces

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We shall introduce a new geometric constant CZ(λ, μ, X) based on a generalization of the parallelogram law, which was proposed by Moslehian and Rassias. First, it is shown that, for a Banach space, CZ(λ, μ, X) is equal to 1 if and only if the norm is induced by an inner product. Next, a characterization of uniformly non-square is given, that is, X has the fixed point property. Also, a sufficient condition which implies weak normal structure is presented. Moreover, a generalized James constant J(λ, X) is also introduced. Finally, some basic properties of this new coefficient are presented.
Wydawca
Rocznik
Strony
299--310
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
autor
  • Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275, P. R. China
  • Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275, P. R. China
autor
  • Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275, P. R. China
Bibliografia
  • [1] J. Gao, On some geometric parameters in Banach spaces, J. Math. Anal. Appl. 1 (2007), 114–122.
  • [2] J. Gao and K. S. Lau, On two classes of Banach spaces with uniform normal structure, Studia Math. 99 (1991), 41-56.
  • [3] C. Yang and F. Wang, On estimates of the generalized Jordan-von Neumann constant of Banach spaces, J. Inequal. Pure Appl. Math. 7 (2006), 194–199.
  • [4] M. Kato, L. Maligranda, and Y. Takahashi, On James Jordan-von Neumann constants and the normal structure coefficient of Banach spaces, Studia Math. 144 (2001), 275–295.
  • [5] M. Kato, L. Maligranda, and Y. Takahashi, Von Neumann-Jordan constant and some geometrical constants of Banach spaces, in: Nonlinear Analysis and Convex Analysis, Research Institute for Mathematical Sciences, vol. 1031, Kyoto University, Kyoto, Japan, 1998, pp. 68–74.
  • [6] J. Alonso, P. Martin, and P. Papini, Wheeling around von Neumann-Jordan constant in Banach spaces, Studia Math. 188 (2008), 135–150.
  • [7] P. Kumam, Some geometric properties and fixed point theorem in modular spaces, in: J. Garcia Falset, L. Fuster, and B. Sims (eds), Fixed Point Theorem and Its Applications, Yokohama Publishers, Yokohama, 2004, pp. 173–188.
  • [8] M. Dinarvand, On a generalized geometric constant and sufficient conditions for normal structure in Banach spaces, Acta Math. Sci. 37 (2017), no. 5, 1209–1220.
  • [9] J. Gao, Research on normal structure in a Banach space via some parameters in its dual space, Commun. Korean Math. Soc. 34 (2019), 465–475.
  • [10] J. Gao, On the generalized Pythagorean parameters and the applications in Banach spaces, Discrete Contin. Dyn. Syst. Ser. B 8 (2007), no. 3, 557–567.
  • [11] A. Jiménez-Melado, E. Llorens-Fuster, and S. Saejung, The von Neumann-Jordan constant, weak orthogonality and normal structure in Banach spaces, Proc. Amer Math. Soc. 134 (2006), no. 2, 355–364.
  • [12] N. Komuro, K. Saito, and R. Tanaka, On the class of Banach spaces with James constant 2, Math. Nachr. 289 (2016), 1005–1020.
  • [13] P. Kumam, On non-square and Jordan-Von Neumann constants of modular spaces, Southeast Asian Bull. Math. 30 (2006), 67 –77.
  • [14] R. Tanaka, Tingley’s problem on symmetric absolute normalized norms on R2, Acta Math. Sin. (Engl. Ser.)30 (2014), 1324–1340.
  • [15] D. H. Cho and Y. S. Choi, The Bishop-Phelps-Bollobás theorem on bounded closed convex sets, J. Lond. Math. Soc. 93 (2016), 502–518.
  • [16]C. Fabiano, M. Vinícius, and M. Galego, A generalized Banach-Stone theorem for C0(K, X) spaces via the modulus of convexity of X∗ , J. Math. Anal. Appl. 450 (2017), 12–20.
  • [17] J. Alonso and P. Martín, A counterexample for a conjecture of G. Zbăganu about the Neumann-Jordan constant, Rev. Roumaine Math. Pures Appl. 51 (2006), 135–141.
  • [18] D. Amir, Characterizations of Inner Product Spaces, Operator Theory: Advances and Applications, vol. 20, Birkhäuser Verlag, Basel, 1986.
  • [19] K. Nikodem and Z. S. Páles, Characterizations of inner product spaces by strongly convex functions, Banach J. Math. Anal. 5 (2011), 83–87.
  • [20] M. S. Moslehian and J. M. Rassias, A characterization of inner product spaces concerning an Euler-Lagrange identity, Commun. Math. Anal. 8 (2010), 16–21.
  • [21] R. C. James, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), no.3, 542–550.
  • [22] J. Gao and K. S. Lau, On the geometry of spheres in normed linear spaces, J. Aust. Math. Soc. Ser. A 48 (1990), 101–112.
  • [23] P. Jordan and J. von Neumann, On inner products in linear metric spaces, Ann. Math. 36 (1935), 719–723.
  • [24] J. A. Clarkson, The von Neumann-Jordan constant for the Lebesgue space, Ann. of Math. 38 (1937), 114–115.
  • [25] M. Kato and Y. Takahashi, On the von Neumann-Jordan constant for Banach spaces, Proc. Am. Math. Soc. 125 (1997), 1055–1062.
  • [26] G. Zbăganu, An inequality of M. Rădulescu and S. Rădulescu which characterizes inner product spaces, Rev. Roumaine Math. Pures Appl. 47 (2001), 253–257.
  • [27] C. He and Y. Cui, Some properties concerning Milman’s moduli, J. Math. Anal. Appl. 329 (2007), 1260–1272.
  • [28] M. Brodskii and D. Milman, On the center of a convex set, Dokl. Akad. Nauk SSSR (N.S.) 59 (1948), 837–840.
  • [29] S. Prus, Geometrical background of metric fixed point theory, in: W. A. Kirk, B. Sims (eds), Handbook of Metric Fixed Point Theory, Kluwer Academic Publishers, Dordrecht, 2001.
  • [30] B. Sims, Orthogonality and fixed points of nonexpansive maps, Proc. Centre Austral. Nat. Univ. 20 (1988), 179–186.
  • [31] B. Sims, A class of spaces with weak normal structure, Bull. Austral. Math. Soc. 49 (1994), 523–528.
  • [32] M. M. Day, Some characterizations of inner-product spaces, Trans. Amer. Math. Soc. 62 (1947), 320–337.
  • [33] Y. Takahashi and M. Kato, On a new geometric constant related to the modulus of smoothness of a Banach space, Acta Math. Sin. 30 (2014), 1526–1538.
  • [34] G. Falset, L. Fuster, and M. Navarro, Uniformly non-square Banach spaces have the fixed point property for nonexpansive mappings, J. Funct. Anal. 233 (2006), 494–514.
  • [35] H. Martini and S. Wu, Orthogonalities, transitivity of norms and characterizations of Hilbert spaces, Rocky Mountain J. Math. 45 (2015), 287–301.
  • [36] V. Dulst, Some more Banach spaces with normal structure, J. Math. Anal. Appl. 104 (1984), 285–289.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc1afccd-fe4a-441f-a923-05992c38c491
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.