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Abstract
The main goal of the paper is to determine the physical and mathematical models of cou-
pled heat and mass transport within pads during ironing as well as optimize the pads thick-
nesses. Introducing the Fick’s diffusion in fibers, heat and mass transport equations are 
formulated and accompanied by a set of boundary and initial conditions. Optimization of 
thickness is gradient oriented, the necessary objective functionals are analyzed. Numerical 
examples of optimization concerning the pads thickness are presented.
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β	 approximation coefficient of sorp-
tion / desorption on the boundary 
of fibres, -

γ	 boundary integrand of the objec-
tive functional, -

ε 	 effective porosity of the textile ma-
terial, -

η 	 absorption coefficient, -
λw 	 cross coefficient described as the 

heat sorption of water vapour by 
fibres, J kg-1

Σ	 discontinuity line between adjacent 
parts of piecewise smooth bound-
ary Γ, -

r	 density of fibres, kg m-3

τ	 transformed time in the adjoint 
structure, s

χ	 Lagrange multiplier, -
Ω	 domain of the structure, m2

∇ 	 gradient operator, -

n	 Introduction
Ironing machines are used to improve 
the  quality of clothing components as 
well as the process of heat treatment (i.e. 
compression effects, working conditions 
and optimisation of the time). Each iron-

Hf 	 relative humidity of fibres, -
h	 surface film conductance, Wm-2K-1

hw 	 mass transport coefficient of water 
vapour in air, m s-1

N	 number of functionals during the 
sensitivity analysis, -

n	 unit vector normal to external 
boundary Γ, directed outwards to 
the domain 		  Ω bounded 
by this boundary, -

P	 number of design parameters dur-
ing the sensitivity analysis, -

p 	 proportion between the sorption 
rates, -

q	 vector of heat flux density, Wm-1

qw 	 vector of mass flux density, kg m-2s-1

qn = n.q	heat flux density normal to the 
external boundary, Wm-1

qnw = n.qw mass flux density normal to 
the external boundary, kg m-2s-1

R1; R2 	 first- and second-stage sorption 
rates, kg m-3 s-1

s1; s2	adjustable parameters of the sorp-
tion process, kg m-3 s-1

T 	 temperature, K/°C
t 	 real time in the primary and addi-

tional structures, s
teq 	 time to reach quasi-equilibrium 

during the sorption process, s
vp(x,b,t)	 transformation velocity field 

associated with design parameter 
bp, -
n.vp transformation velocity nor-
mal to the external boundary Γ, -

wa 	 water vapour concentration in the 
air filling the interfibre void space, 
kg m-3

wf 	 water vapour concentration within 
the fibres, kg m-3

WC = wf/r fractional water content on 
fibre surface, -

Γ	 external boundary of the structure, -
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Nomenclature
A	 matrix of heat conduction coeffi-

cients, Wm-1K-1 
b	 vector of design parameters, m
c	 thermal heat capacity, J kg-1K-1

cv 	 volumetric heat capacity of textile 
material, J m-3K-1

D	 matrix of water vapour diffusion 
coefficients within fibres, m2s-1

divΓvp	 tangent divergence of vector vp 
on external boundary Γ, -

e	 water vapour pressure, Pa
F	 objective functional, -
F’	 Lagrange functional (the auxiliary 

function), -
gp = Dg/Dbp	 global (material) de-

rivative of g in respect of design 
parameter bp, -

gp = ∂g/∂bp	 partial (local) deriva-
tive of g in respect of design pa-
rameter bp, -

H	 mean curvature of the external 
boundary Γ, m-1

Ha 	 relative humidity of air, -

Figure 1. Scheme of ironing device with 
mobile upper and stationary lower plate: 
1 – upper plate; 2 – upper pad; 3 – turning 
arm; 4 – ironed clothing; 5 – lower pad;  
6 – lower plate; 7 – base of lower plate.
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ing machine has two plates provided 
with pads of different shapes, Figure 1. 
The  lower plate is fixed to the base, 
whereas the upper one is mobile. Ironing 
machines can be divided into the follow-
ing: (i) universal general application – all 
textiles are ironed on pads of the same 
shape, and (ii) specialised, particular ap-
plication – each part of clothing is ironed 
on a pad of suitable shape. 

Both plates secure an adequate sequence 
of ironing and indispensable pressure. 
The base of the upper plate is usually 
made of aluminum, whereas the lower one 
is of aluminum and cast iron. The steam 
presses are additionally equipped with 
devices to drain the steam from the op-
erations area to the surroundings. Pads 
are designed according to the base of the 
ironing machine, the operation sequence, 
the product line and the type of ironing 
(i.e. inter-operational or final ironing). 
Materials are characterised by: adequate 
elasticity, equivalent air permeability, 
uniform porosity, suitable temperature 
resistance, impurity resistance, moisture 
resistance, wear resistance, mechanical 
durability, optimal heat and moisture 
transport to the surroundings, maintain-
ability and washability. Consequently 
the pad consists of a few different textile 
layers of different requirements. The uni-
versal pads are usually rectangular, while 
specialised pads have a shape corre-
sponding to the clothing element. Hard 
pads are applied during inter-operational 
ironing, whereas it is soft material during 
the finishing procedure.

Analysis of available literature showed 
that publications relating to the theoreti-
cal description of heat and mass transport 
within elements of ironing machines (i.e. 
textile pads) as well as ironed textiles 
are so far unknown. The existing publi-
cations describe some practical aspects 
concerning different materials, change 
of material characteristics under pressure 
and temperature etc. The specific solu-
tions of ironing machines are offered by 
particular companies [1 - 3]. Some inter-
esting information concerning the design 
of ironing machines, textile pads, applied 
materials etc. can be found in catalogues 
and spare parts lists [4, 5]. There are 
some general works where the authors 
provide information on recommended 
ironing technology, the technological 
regime, time, temperature, humidity etc. 
[6, 7]. The pads and ironed material are 
subjected to heat and water vapour trans-
port. Coupled heat, moisture and liquid 
water transfer is discussed by Li, Zhu [8]; 

Li, Zhu, Yeung [9]. Thus the moisture is 
supplied as water vapour during ironing, 
and the precise description of coupled 
heat and water vapour transport is ana-
lysed by Li [10]; Li, Luo [11]. The au-
thors introduce the essential assumptions 
and the third equation according to Da-
vid, Nordon [12]. A Mathematical model 
is described by second-order differential 
equations with a set of conditions.

The main goal of the work was to de-
termine the physical and mathematical 
models of coupled heat and mass trans-
port within pads during ironing as well 
as optimise pad thicknesses. Optimisa-
tion of the thickness is gradient oriented 
and needs the first-order sensitivities of 
the objective functional. The direct and 
adjoint approaches to sensitivity analy-
sis were previously discussed by Dems, 
Mróz [13] & Korycki [14 - 16].
 
The gradient oriented optimisation of 
textiles during heat and mass transport 
is an extension of a previous work con-
cerning textile engineering optimisation 
[14 - 16]. The novelty elements are as 
follows: (i) compact modelling of heat 
and moisture transport in ironing plates, 
(ii) thickness optimisation of textile pads, 
and (iii) application of moisture-depend-
ent material parameters. The results ob-
tained will be verified in the next paper 
using a sweating guarded hotplate, which 
simulates the coupled emission of heat 
and moisture from the skin.

	 Physical and mathematical 
model of coupled heat and 
water vapour transport

Let us introduce a physical model of 
the couped heat and mass transfer within 
an ironing machine equipped with two 
plates and two pads. Textile pads are usu-
ally made of two or three material layers 
of different characteristics. The compo-
nents of an optimal ironing process are 
as follows: the prescribed moisture flux 
density distributed from the upper and 
lower plates, the draining of moisture, 
the specified temperature and the relaxa-
tion time. Pads are filled by water vapour 
because the moisturising time is rela-
tively short and the moisture flux density 
is relatively insignificant. Thus volume 
changes in textiles caused by moisture 
diffusion are negligible in respect of dry 
material, Li [10]. The main problem also 
is to optimise the material thickness of 
the textile pad to secure the optimal tech-
nological parameters. 

The most general case is 3D formulation 
of the problem. However, the finite ele-
ment model is complicated and the cal-
culations are time-consuming. Let us 
introduce the general application of the 
ironing machine and plates of a rectan-
gular shape and same dimensions of the 
cross-section. To simplify the calcula-
tions, the spatial problem can be reduced 
to an optional cross-section of the pad i.e. 
2D plane material thickness is analysed.

Coupled heat and water vapour transport 
is characteristic for textile structures, 
cf. Li [10], Li, Luo [11]. A part of heat 
is transported with moisture, whereas 
water vapour is transported with heat at 
a molecular level. Heat is transported by 
conduction within the textile material as 
well as by convection and radiation from 
the external surfaces to the void spaces 
between fibres. Moisture is transported 
by diffusion within fibres and spaces be-
tween the textile material.

The extile material of the pad is inho-
mogeneous, irrespective of the structure 
(i.e. woven fabric, knitted fabric, non-
wovens), and should be homogenised. 
The textile structure consists of fibres 
and free spaces between them, which re-
quires a complex two-stage homogenisa-
tion procedure. Fibres are heterogeneous 
as a result of the spinning process and are 
homogenised in respect of internal inho-
mogeneity during the “internal” homog-
enisation. The whole structure is homog-
enised as a composition of textile mate-
rial and void spaces during the “external” 
homogenisation. The fibrous material is 
characterised by instantaneous thermal 
equilibrium on contact surfaces between 
fibres and free spaces. The material char-
acteristics are porosity-dependent and 
can be determined according to [17].

The physical and mathematical state of 
a dynamical system subjected to coupled 
heat and mass transport is described by 
a set of state variables, which are, for 
instance, temperature, moisture concen-
tration, entropy, pressure, internal energy 
etc. These variables should be representa-
tive for the dynamical system and depend 
on problem formulation. Coupled heat 
and water vapour transport is determined 
by the heat and moisture balances ac-
companied by the correlation of moisture 
diffusion within the fibre. Thus the state 
of the fibrous structure is described by 
second-order differential correlations 
of the temperature T and water vapour 



FIBRES & TEXTILES in Eastern Europe  2016, Vol. 24,  1(115)130

The equilibrium time teq is defined exper-
imentally for some textiles, cf. Li [10]; 
Haghi [17]. The ironing time equal to 15 s 
is considerably shorter than the equilib-
rium time teq = 540 s. Moreover the frac-
tional water content is relatively low be-
cause the liquid water is technologically 
inconvenient. Thus the first stage of sorp-
tion is determined by the proportion p = 0  
and Fick’s diffusion in a dry textile be-
cause the water vapour diffuses into 
the  relaxed material. The  general shape 
of fibres can be assumed as cylindrical. 
By reason of instantaneous thermody-
namic equilibrium on contact between 
fibres and void spaces within the mate-
rial, the following correlation can be in-
troduced, see Equation 3.

Global description of heat and mass 
transport equations during the first sorp-
tion phase can be determined by Equa-
tion 1 and the third equation according 
to David, Nordon (3). The sorption and 
desorption of water vapour on the fibre 
surface can be approximated by coeffi-
cient β, cf. Crank [18], Li [10] wf = rbwa 
consequently we denote for the i-th layer, 
cf. Korycki [14] - see the set of Equa-
tions 4.

The transport equations are accompanied 
by the set of conditions shown in Fig-
ure 2. The upper portion of the upper fill-
ing pad contacts the heating and moisten-
ing devices within the plate, which cre-
ates the prescribed value of temperature 
and moisture flux density. The model is 
characterised by the second-kind condi-
tions of heat and water vapour transport 
and the adequate boundary portions are 
Γq and Γ2. Side boundaries are open to 
the surroundings. Heat is lost by convec-
tion (third-kind condition, part ΓC) and 
radiation (part Γr) and moisture by con-
vection (third-kind condition, part Γ3). 
Heat and water vapour are /transported 
from the lower part of the lower filling 
plate to the surroundings. Thus the model 
is subjected to the first-kind conditions 
for portions ΓT and Γ1. Temperature 
distribution is determined according to 
Figure 3. The closed ironing machine se-
cures the pressure of textiles prescribed. 
The model is described by the fourth-
kind conditions on the common surfaces 
between materials Γi and Γ4. The initial 
conditions determine the temperature and 
water vapour concentrations at the begin-
ning of ironing. The particular bounda-
ries as well the initial conditions are pre-
sented in the relationships (5).

tain internal heat and mass sources (i.e. 
the source capacities are equal to zero  
f = fw = 0) nor the initial heat and mass 
fluxes q* = qw* = 0. The heat and mass 
transport equations in the i-th layer have 
the form [14] presented in the set of 
Equations 1.

To solve the problem, let us introduce 
the  experimental relationship, Li [10] 
show as Equation 2.

concentrations wa; wf [14, 16], which are 
consistently the state variables.

Mathematically speaking, coupled heat 
and mass transport is determined by 
the following: (i) heat and mass balances, 
(ii) constitutive equations of the material, 
(iii) relations between the state variables, 
and (iv) physical and chemical correla-
tions defining all phases of the material. 
A typical ironing machine does not con-

Γ2 Γq

Γ1 ΓT

Γ3ΓC  Γr

Figure 2. Structure of ironing plates and pads; a) structure of plates, pads and design 
variables, b) external boundary portions of ironing system, g1 – g4 pads thicknesses (design 
variables), l1, l2 – thicknesses of textiles subjected to ironing, 1 – upper plate, 2 – filling 
pad of upper plate, 3 – protective fabric of upper plate, 4, 5 – ironed textiles, 6 – protective 
fabric of lower plate, 7 – filling pad of upper plate, 8 – lower plate.
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	 Application of first-order 
sensitivity approach 

Optimal thicknesses of pads are deter-
mined using the sensitivity approach. 
The material derivative of the objective 
functional in respect of design parame-
ters is defined as the first-order sensitivity 
DF/Dbp = Fp. The objective functional is 
generally described by variables wf; qw. 
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Integrand γ is the continuous and differ-
entiable function on the adequate bound-
ary part. 

The direct approach [14 - 16] is conveni-
ent to optimise the shapes described by a 
small number of design variables, for ex-
ample pad thicknesses. The approach is 
characterised by P problems of additional 
heat and mass transfer associated with 
each design parameter and 1 primary i.e. 
(P+1) problems. State variables are the 
temperature Tp and the moisture concen-
trations p

fw , p
fw . The shape, material pa-

rameters and transport conditions are the 
same in primary and additional structures, 
but the distribution of heat and moisture 
fields is different [13, 14]. The direct and 
additional problems are defined in real 

time. The correlations are determined 
by material differentiation of the appro-
priate Equations 5. Some components 
are now design parameter-independent,
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The first-order sensitivity correlation 
can be determined as presented in Equa-
tion 8 [14].
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duces the set of adjoint problems asso-
ciated with each objective functional i.e. 
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Figure 3. Example of phases of ironing 
cycle; T – temperature on the lower surface 
of lower pad; t – time, 1 – total working 
time; 2 – closure of plates; 3 – moisture 
from the upper plate; 4 – moisture from the 
lower plate; 5 – partially open upper plate, 
draining of moisture.
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nal time t=tf is predefined as the starting 
time τ=0 according to the rule τ = tf  – t. 

The first-order sensitivity expression has 
the form in presented in Equation 10  re-
spect of [14].

n	 Problem of optimal design 
The problem of optimal design can be 
determined as a minimisation of the 
objective functional F accompanied by 
the constant temperature or heat flux den-
sity on the external boundary (see Equa-
tion 11). 
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      (11)

The equations are rearranged using 
the  Lagrangian functional and its sta-
tionarity conditions [14], which allows 
to formulate adequate optimality condi-
tions.

The variational approach to sensitivity 
analysis necessitates the unique physical 
application of the objective functional. 
Therefore, clear physical definitions of 
the optimisation problems should be 
classified. The important technologi-
cal criterion is correct moisture content 
within the pads during ironing. Hence 
the moisture flux density should be mini-
mised on the external boundary portion 
of pads during the technological process, 
which is described as presented by Equa-
tion 12. 
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0
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
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t
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extw     (12)

The correct draining of moisture re-
quires the equalizsed distribution of wa-
ter vapour on the external boundary. The 
functional is the global measure of water 
vapour concentration within fibres wf on 
the external surface of the pads. Numeri-
cally speaking, the optimisation criterion 
provides the minimal global measure 
which minimizes the local maxima of 
state variables. Locations of the maxima 
can change because the maximal values 
of concentrations are time-dependent. On 
the other hand, the locations are of low 
importance during optimization of con-
stant pad thickness (see Equation 13). 

the transport equations and boundary 
conditions of the form analogous to the 
primary structure, cf. [14], see set of re-
lations (9).
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Equations 9, 10 &13.

Problem formulation. Ironing press. Ironing plates and pads thicknesses

Physical model. Simplifications. Physical description. Homogenization

Mathematical model. Transport equations, boundary and initial conditions

Optimization. Sensitivity analysis. Particular form of objective functional

Results. Optimal thickness. State variables within optimal pads

Numerical implementation. Analysis: Finite Element Net
Synthesis: numerical optimization of objective functional with constraints

Figure 4. Algorithm of thickness optimization of textile pads within ironing press.
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An algorithm of thickness optimisation 
of textile pads within an ironing machine 
is shown in Figure 4. 

	 Thickness optimisation  
of textile pads in an ironing 
machine

The main goal of the paper presented is 
to optimise pad thicknesses. Let us as-
sume an ironing machine of general ap-
plication provided with rectangular pads. 
Optimisation can be reduced to an op-
tional cross-section of the structure i.e. 
the plane problem is analysed. A funda-
mental part of the technological process 
is closure of the ironing machine and 
moistening of textiles by both the upper 
and lower plates, cf. Figure 3. Optimal 
parameters of the pads are determined 
during this part of the ironing proce-
dure. Water vapour is transported from 
the upper and lower plates during the 
time sequence prescribed. The structure 
of ironing plates, boundary portions and 
design variables are shown in Figure 2, 
Figure 3. Let us introduce two-layer 
pads made of different materials. The fill-
ings are made of industrial felt FTK [19], 
which is polyester fabric of surface mass 
2160×10-3  kg/m2. The material is inex-
pensive, relatively durable, thermal and 
its moisture characteristics are stable, 
although difficult to dry. External protec-
tion is woven fabric of high mechanical 
resistance and air permeability, of surface 
mass 228×10-3 kg/m2. Design variables 
are the thicknesses g1 – g4. The material 
parameters depend on the fractional wa-
ter content on the fibre surface i.e. water 
vapour concentration in fibres and the 
material density. An orthotropic matrix of 
the diffusion coefficients of water vapour 
in fibres can be determined in respect of 
[17]. Let us assume that the textile mate-
rial subjected to ironing is cotton. Thus 
we can denote for the fibrous material of 
the i-th layer (i = 1 is protective woollen 
fabric, i = 2 polyester felt, i = 3 cotton) , 
see Equation 14. 

Both textiles are homogenised using the 
most efficient and simple ‘rule of mix-
ture’ [20]. The diffusion coefficient of wa-
ter vapour in air is equal to Da = 2.5e-5.  
The material porosity and sorption coef-
ficient of water vapour in fibres are intro-
duced as constant in the form of Equa-
tion 15.

Heat conduction coefficients in the or-
thotropic material are defined as Equa-
tion 16 [17].

The cross-transport coefficient λw and 
heat capacity c are assumed according to 
Equation 17 [17].

Heat and mass transport correlations for 
the primary problem are determined by 
Equations 4. Let us optimise the material 
thickness in respect of the minimal mois-
ture flux density on the lower boundary 
portions in the lower plate Γ1∪ΓT, cf. 
Equation 12. The continuous constraint 
is the time-dependent temperature. The 
problem is solved by means of direct and 
adjoint approaches to sensitivity analy-
sis. The primary problem is defined us-
ing Equations 4 & Equations 5, and the 

direct approach by Equations 7. Time 
changes from the initial t0 = 0 to final 
tk = 15 s and the discrete increase is as-
sumed as Δt = 1 s. Convection is char-
acterised by h = 8 W/(m2K) and the sur-
rounding conditions by T∞ = 20 °C,  
wf∞ = 0.06 kg/m3. Introducing the linear 
external boundary i.e. the mean curvature 
H = 0, the optimisation problem and final 
form of the sensitivity expression are de-
scribed as follows, compare with  Equa-
tion 8, Equations 11 & Equation  12 
show in Equation 18 (see page 134).

The adjoint approach is defined by Equa-
tions 9 and sensitivity expression by 
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Equation 10, having the form of Equa-
tion 19.

Each step of the iterative procedure con-
sists of a synthesis and analysis stage. 
The thickness at the analysis stage is 
approximated during the calculations of 
heat and moisture transport by the same 
finite elements of the serendipity family 
according to Zienkiewicz [21]. Let us 
introduce the plane rectangular 4-nodal 
elements of the nodes in the corners. All 
pads are approximated by 600 elements 
of 1600 nodes. State fields for the prima-
ry set of the additional and adjoint prob-
lems are calculated by solution of the ba-
sic finite element equation. The direc-
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Equations 18, 19, 20 & 21.

(18)

(19)

(20)

(21)

tional minimum at the synthesis stage is 
calculated by means of the second-order 
Newton procedure and alternatively y the 
first-order method of steepest descent. 
The initial and optimal thicknesses of the 
pads are listed in Table 1, the thicknesses 
of ironed cotton layers are constant l1 = 
l2 = 0.03 m. The minimal objective func-
tional is obtained in 13 steps and reduced 
to 15.71% in relation to the initial value. 
Each optimal layer made of polyester 
felt is thicker than the initial (39.8% and 
53.7%), whereas the optimal protective 
woolen fabrics are thinner than the initial 
(17% and 22%). The sum of the optimal 
is 33.5% greater than that of the initial 
thicknesses.

The other technological criterion is 
the  equalised distribution of moisture 
on the upper surface of the upper pad. 
The  optimisation functional is a global 
measure of local moisture concentra-
tion in fibres wf on the surface Γ2∪Γq. 
The continuous constraint is the time-
dependent heat flux density. The problem 
is solved using the direct approach, cf. 
Equations 11, Equation 13 see Equa-
tion 20.

The primary problem is defined using 
Equations 4 & Equations 5, and the di-
rect approach by Equations 7. The sen-
sitivity expression of the direct approach 
can be simplified by Equation 8 to 
the form presented in Equation 21.

The cross-section of the structure is ap-
proximated at the analysis stage using 
the  same finite element net for the pri-
mary and the set of additional problems. 
The directional minimum at the synthesis 
stage is calculated using the Newton pro-
cedure and alternatively the method of 
steepest descent. The initial and optimal 
values are listed in Table 2. The minimal 
objective functional is obtained in 11 

Table 1. Initial and optimal thicknesses of pads during minimization of moisture flux density.

Design variable ∙10-2m g1 g2 l1 l2 g3 g4
Initial value 4.00 1.00 3.00 3.00 1.00 4.00
Optimal value 5.59 0.83 3.00 3.00 0.78 6.15

Table 2. Initial and optimal thicknesses of pads during equalized distribution of moisture.

Design variable ∙10-2m g1 g2 l1 l2 g3 g4
Initial value 4.00 1.00 3.00 3.00 1.00 4.00
Optimal value 4.50 0.93 3.00 3.00 0.95 4.28
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steps and reduced of 10.11% in relation 
to the initial value. It follows that the op-
timal polyester layers are again thicker 
and the woolen one thinner; however, 
the  optimal thicknesses are comparable 
to the initial values. The maximum dif-
ference in dimensions is 12.5%.

n	 Conclusions
The optimisation of pad thicknesses in 
an ironing machine subjected to coupled 
heat and mass transport is a multidisci-
plinary engineering problem. It is neces-
sary to introduce the physics of heat and 
mass transfer, description by means of 
second-order differential equations with 
boundary and initial conditions as well 
as determine an optimal solution. In or-
der to describe the mathematical model, 
we have to analyse the heat and mass 
balances, formulate transport equations 
accompanied by the set of conditions as 
well as introduce a physical description 
of moisture diffusion in fibres according 
to Fick’s Law. The objective functionals 
applied help to determine technological 
improvements i.e. minimal moisture flux 
density during ironing and the equalised 
distribution of moisture. It follows that 
thickness optimization helps to solve 
the  number of practical problems con-
cerning the ironing. In conclusion, the 
problem seems to be a promising tool for 
generating the optimal thickness of pads 
during the ironing process. Numerical 
optimisation is cheaper and more univer-
sal than complex analysis of finished pro-
totypes, and provides practical benefits. 

The optimization functionals applied 
minimize the moisture flux density as 
well as the global measure of moisture 
concentration, whereas constraints are 
the temperature prescribed or heat flux 
density. The alternative integrands can 
describe some phenomena of the heat 
transfer, whereas the constraints can de-
termine the moisture concentrations pre-
scribed or moisture flux density. Gener-
ally speaking, the optimal solutions can 
be limited to permissible increases in di-

mensions, minimal material thicknesses, 
minimal parameters of heat and mass 
transport etc. The optimisation procedure 
can be also extended to the design pro-
cess of plates, draining channels of op-
timal dimensions, the transport of media 
within heat and moisture channels etc. 
The consecutive novelty elements are 
the newly introduced physical problems 
as well as optimisation techniques imple-
mented to develop the analysis.

The paper presented is a theoretical opti-
misation of pad thicknesses by means of 
computer analysis. The other approach 
is practical analysis, where the  neces-
sary parameters are temperature, press-
ing time as well as the minimal time 
of the  operation cycle together with 
the  minimal energy necessary to realise 
the product. A significant factor is also 
the repetition time. On the other hand, 
nomograms can be applied to determine 
the operational parameters required.

The theoretical results of optimal pad 
thicknesses obtained should be compared 
with corresponding tests, which is be-
yond the scope of the paper presented. 
The initial results allow to conclude that 
practical verification should be discussed 
in the consecutive paper. 
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