PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental Analysis of the Post-Buckling Behaviour of Compressed Stiffened Panel with Refill Friction Stir Spot Welded and Riveted Stringers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of research aimed at comparing two stringer joining technologies of stiffened panels. Experimental tests were carried out on the basis of uniaxial compression of thin-walled panels stiffened with two parallel stringers. The panels consist of a skin plate and stringers joined with two techniques: riveting and refill friction stir spot welding (RFSSW). The aim of the investigations was to determine the amount of the critical load, the character of the structure's work in the range of post-buckling behaviour and the mode of panel destruction. For deformation measurements, an optical scanner Aramis based on the digital image correlation (DIC) technique was used. The research conducted enabled the assessment of the effectiveness of the RFSSW technology of joining the semi-monocoque structures, taking into account the range of post-critical deformations caused both to the local and global loss of stability. The compression tests have shown that the plate with welded stringers with a spacing of 29.5 mm exhibits the ultimate load similar to the variant of the riveted panel. It was also observed that the nature and number of buckling half-waves depend on the applied load and spacing between connectors.
Twórcy
  • Department of Maufacturing and Production Engineering, Rzeszow University of Technology
  • Department of Aircraft and Aircraft Engines, Rzeszow University of Technology
  • Department of Maufacturing and Production Engineering, Rzeszow University of Technology
autor
  • Belgian Welding Institute, Ghent, Belgium
Bibliografia
  • 1. Wanhill R.J.H., Byrnes R.T., Smith C.L. Stress Corrosion Cracking (SCC). Aerospace Vehicles in Stress Corrosion Cracking. Theory and Practice, Raja V.S., Shoji T. (Eds.), Woodhead Publishing; 2011: 608–650.
  • 2. Wang J.T.S., Biggers S.B. Skin/stiffener Interface Stresses in Composite Stiffened Panels. NASA contractor report 172261. Lockheed-Georgia Company; 1984.
  • 3. Pogačnik B., Duhovnik J., Tavčar J. Aircraft fault forecasting at maintenance service on the basis of historic data and aircraft parameters. Eksploatacja i Niezawodnosc – Maintenance and Reliability. 2017; 19(4): 624–633.
  • 4. Kopecki T., Mazurek P., Lis T., Chodorowska D. Post-buckling deformation states of semi-monocoque cylindrical structures with large cut-outs under operating load conditions. Numerical analysis and experimental tests. Eksploatacja i Niezawodnosc – Maintenance and Reliability. 2016; 18(1): 16–24.
  • 5. Dębski H. Experimental investigation of postbuckling behavior of composite column with top-hat cross-section. Eksploatacja i Niezawodnosc –Maintenance and Reliability. 2013; 15(2): 106–110.
  • 6. Quinn D., Murphy A., Glazebrook C. Aerospace stiffened panel initial sizing with novel skin substiffening features. International Journal of Structural Stability and Dynamics. 2012; 12(5): 1250060.
  • 7. Vashisht K.S.V. Experimental investigation of the aircraft stiffened panel structure under pressure loads. International Journal of Innovations in Engineering and Technology. 2016; 7(4): 462–472.
  • 8. Qi L.A. A study the buckling behaviour of stiffened panels under compression and lateral pressure. M.Sc. thesis. Delft University of Technology, 2018.
  • 9. Khedmati M.R., Zareei M.R., Rigo P. Empirical formulations for estimation of ultimate strength of continuous stiffened aluminium plates under combined in-plane compression and lateral pressure. Thin Walled Structures. 2010; 48(3): 274–289.
  • 10. Kumar J.V., Sreenivasulu V., Rao P.D., Kiran C.U., Kumar V. Static and dynamic analysis of aircraft stiffened panel. International Journal of Innovations in Engineering and Technology. 2013; 3(2): 134–139.
  • 11. Khedmati M.R., Zareei M.R., Rigo P. Sensitivity analysis on the elastic buckling and ultimate strength of continuous stiffened aluminium plates under combined in-plane compression and lateral pressure. Thin Wall Structures. 2009; 47: 1232–1245.
  • 12. Serroni G., Squillace A., Prisco U., Bitondo C., Prisco A. Aircraft panels stiffened by friction stir welded extruded parts: mechanical characterization. La Metallurgia Italiana. 2011; 1: 35–39.
  • 13. Kłonica M. Comparative analysis of effect of thermal shock on adhesive joint strength. Advances in Science and Technology Research Journal. 2016; 10(32): 263–268.
  • 14. Matuszak J., Kłonica M., I Zagórski I. Measurements of forces and selected surface layer properties of AW-7075 aluminum alloy used in the aviation industry after abrasive machining. Materials. 2019; 12(22): 3707.
  • 15. Murphy A., Lynch F., Price M., Gibson A. Modified stiffened panel analysis methods for laser beam and friction stir welded aircraft panels. Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng. 2006; 220: 267–278.
  • 16. Murphy A., Price M., Curran R., Wang, P. The Integration Of Strength And Process Modeling Of Friction-Stir-Welded Fuselage Panels. AIAA Journal of Aerospace Computing, Information, and Communication. 2006; 3, 159–176.
  • 17. Murphy A., McCune W., Quinn D., Price M. The characterisation of friction stir welding process effects on stiffened panel buckling performance. Thin-Walled Struct., 2007; 45: 339–351.
  • 18. Shen Z., Yang X., Zhang Z., Cui L., Li T. Microstructure and failure mechanisms of refill friction stir spot welded 7075-T6 aluminium alloy joints. Materials and Design. 2013; 44: 476–486.
  • 19. Li Z., Ji S., Ma Y., Chai P., Yue Y., Gao S. Fracture mechanism of refill friction stir spot-welded 2024-T4 aluminum alloy. International Journal of Advanced Manufacturing Technology. 2016; 86(5–8): 1925–1932.
  • 20. Kopecki H., Święch Ł. Post–buckling state of rectangular plate stiffened by denselly arranged ribs. Numerical analysis and experimental investigation. Mechanics and Mechanical Engineering. 2013; 17(1): 71–87.
  • 21. Kubit A., Trzepiecinski T., Faes K., Drabczyk M., Bochnowski W., Korzeniowski M. Analysis of the effect of structural defects on the fatigue strength of RFSSW joints using C – scan scanning acoustic microscopy and SEM. Fatigue Fracture Engineering Materials & Structures. 2019; 42(6): 1308–1321.
  • 22. ISO 6892-1:2016 - Metallic materials - Tensile testing - Part 1: Method of test at room temperature. International Organization for Standardization, 2016.
  • 23. Wang H.L. Evaluation of multiple site damage in lap joint specimens. Ph.D. dissertation Purdue University, 1998.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc16cd99-660e-4fa7-9228-08f4cf76d7fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.