PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Duality via Truth for Information Algebras Based on De Morgan Lattices

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Duality via truth is a kind of correspondence between a class of algebras and a class of relational systems (frames). These classes are viewed as two kinds of semantics for some logic: algebraic semantics and Kripke-style semantics, respectively. Having defined the notion of truth, the duality principle states that a sequent/formula is true in one semantics if and only if it is true in the other one. In consequence, the algebras and their corresponding frames express equivalent notion of truth. In this paper we develop duality via truth between modal algebras based on De Morgan lattices and their corresponding frames. Some axiomatic extensions of these algebras are considered. Basing on these results we present duality via truth between some classes of latticebased information algebras and their corresponding frames.
Wydawca
Rocznik
Strony
45--75
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00–662 Warsaw, Poland
Bibliografia
  • [1] Stone M. The theory of representations of Boolean algebras. Transactions of the American Mathematical Society. 1936;40(1):37–111. Available from: http://www.ams.org/journals/tran/1936-040-01/S0002-9947-1936-1501865-8/S0002-9947-1936-1501865-8.pdf.
  • [2] Jónsson B, Tarski A. Boolean algebras with operators, Part I. American Journal of Mathematics. 1951; 73:891–939. doi:10.2307/2372123.
  • [3] Jónsson B, Tarski A. Boolean algebras with operators, Part II. American Journal of Mathematics. 1952; 74:127–162. doi:10.2307/2372074.
  • [4] Maksimova LL. Pretabular superintuitionistic logics. Algebra and Logic. 1972;11(5):558–570. doi:10.1007/BF02330744.
  • [5] Maksimova LL. Pretabular extensionsof the Lewis’ logic S4. Algebra and Logic. 1975;14(1):28–55. doi:10.1007/BF01668576.
  • [6] Priestley HA. Representation of distributive lattices by means of ordered Stone spaces. Bulletin of the London Mathematical Society. 1970;2:186–190. doi:10.1112/blms/2.2.186.
  • [7] Priestley HA. Ordered topological spaces and the representation of distributive lattices. Proceedings of the London Mathematical Society. 1972;24:507–530. doi:10.1112/plms/s3-24.3.507.
  • [8] Goldblatt R. Varieties of complex algebras. Annals of Pure and Applied Logic. 1989;44:173–242. doi: 10.1016/0168-0072(89)90032-8.
  • [9] Orłowska E, Rewitzky I. Duality via Truth: Semantic frameworks for lattice–based logics. Logic Journal of the IGPL. 2005;13:467–490. doi:10.1093/jigpal/jzi035.
  • [10] Orłowska E, Radzikowska AM, Rewitzky I. Dualities for Structures of Applied Logics. vol. 56 of Mathematical Logic and Foundations. College Publications; 2015. ISBN: 978-84890-181-0.
  • [11] Hajek P. Metamathematics of fuzzy logic. Trends in Logic. Springer Netherlands; 1998. ISBN-10:1402003706, 13:978-1402003707. doi:10.1007/978-94-011-5300-3.
  • [12] Demri S, Orłowska E. Incomplete Information: Structure, Inference, Complexity. EATCS Monographs in Theoretical Computer Science. Springer-Verlag Berlin Heidelberg; 2002. ISBN: 978-3-642-07540-7, 978-3-662-04997-6. doi:10.1007/978-3-662-04997-6.
  • [13] Orłowska E. Incomplete Information: Rough Set Analysis. Studies in Fuzziness and Soft Computing. Physica Verlag Heidelberg; 1998. ISBN: 978-3-7908-1049-3. doi:10.1007/978-3-7908-1888-8.
  • [14] Chellas BF. Modal Logic: An Introduction. Cambridge University Press, Cambridge; 1980. ISBN: 0-521-29515-7.
  • [15] Humberstone I. Inaccessible words. Notre Dame Journal of Formal Logic. 1983;24:346–352. doi:10.1305/ndjfl/1093870378.
  • [16] Radzikowska AM. Rough Approximation Operations Based on IF Sets. In: Artificial Intelligence and Soft Computing – ICAISC 2006. vol. 4029 of Lecture Notes in Artificial Intelligence. Springer Berlin Heidelberg; 2006. p. 528–537. ISBN: 978-3-540-35748-3. doi:10.1007/11785231 56.
  • [17] Radzikowska AM. On Lattice-Based Fuzzy Rough Sets. In: 35 Years of Fuzzy Set Theory. Celebratory Volume Dedicated to Retirement of Etienne E. Kerre. vol. 261 of Studies in Fuzziness and Soft Computing. Springer Berlin; 2011. p.107–126. ISBN: 978-3-642-16628-0. doi:10.1007/978-3-642-16629-7 6.
  • [18] Radzikowska AM, Kerre EE. A comparative studies of fuzzy rough sets. Fuzzy Sets and Systems. 2002; 126:137–155. doi:10.1016/S0165-0114(01)00032-X.
  • [19] Radzikowska AM, Kerre EE. A fuzzy generalisation of information relations. In: Beyond Two: Theory and Applications of Multiple-Valued Logics. vol. 114 of Studies in Fuzziness and Soft Computing. Physica-Verlag HD; 2002. p. 264–290. ISBN: 978-3-7908-2522-0. doi:10.1007/978-3-7908-1769-0 13.
  • [20] Radzikowska AM, Kerre EE. Fuzzy Rough Sets based on Residuated Lattices. In: Peters JF, Skowron A, Dubois D, Grzymała-Busse JW, Inuiguchi M, Polkowski L, editors. Transactions of Rough Sets II: Rough Sets and Fuzzy Sets. vol. 3135 of Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2004. p. 278–296. ISBN: 978-3-540-23990-1. doi:10.1007/978-3-540-27778-1 14.
  • [21] Radzikowska AM, Kerre EE. On L–valued fuzzy rough sets. In: Artificial Intelligence and Soft Computing – ICAISC 2004. vol. 3070 of Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2004. p. 526–531. ISBN: 978-3-540-22123-4. doi:10.1007/978-3-540-24844-6 78.
  • [22] Radzikowska AM, Kerre EE. Characterisations of main classes of fuzzy relations using fuzzy modal operators. Fuzzy Sets and Systems. 2005;152(2):223–247. doi:10.1016/j.fss.2004.09.005.
  • [23] Dzik W, Orłowska E, van Alten C. Relational representation theorems for general lattices with negations. In: Schmidt R, editor. Relations and Kleene Algebra in Computer Science. vol. 4136 of Lecture Notes in Computer Science. Springer-Verlag; 2006. p. 162–176. doi:10.1007/11828563 11.
  • [24] Dzik W, Orłowska E, van Alten C. Relational Representation Theorems for Lattices with Negations: A survey. In: de Swart HCM, Orłowska E, Schmidt G, Roubens M, editors. Theory and Applications of Relational Structures as Knowledge Instruments II. vol. 4342 of Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2006. p. 245–266. ISBN: 978-3-540-69223-2. doi:10.1007/11964810 12.
  • [25] Düntsch I, Orłowska E, Radzikowska AM. Lattice–based relation algebras and their representability. In: de Swart H, Orowska E, Schmidt G, Roubens M, editors. Theory and Applications of Relational Structures as Knowledge Instruments. vol. 2929 of Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2003. p. 234–258. doi:10.1007/978-3-540-24615-2 11.
  • [26] Düntsch I, Orłowska E, Radzikowska AM. Lattice-based relation algebras II. In: de Swart HCM, Orłowska E, Schmidt G, Roubens M, editors. Theory and Applications of Relational Structures as Knowledge Instruments II. vol. 4342 of Lecture Notes in Artificial Intelligence. Springer Berlin Heidelberg; 2006. p. 267–289. ISBN: 978-3-540-69223-2. doi:10.1007/11964810 13.
  • [27] Orłowska E, Vakarelov D. Lattice-based modal algebras and modal logics. In: Hajek P, Valdes L,Westerstahl D, editors. Logic, Methodology and Philosophy of Science. King’s College London Publishers; 2005. p. 147–170. ISBN: 1-904987-21-4.
  • [28] Radzikowska AM. Representation theorems for lattice-ordered modal algebras and their axiomatic extensions. Fundamenta Informaticae. 2016;144(2):179–198. doi:10.3233/FI-2016-1327.
  • [29] Radzikowska AM. Duality via truth for lattice-based modal algebras with negations; 2016. Submitted.
  • [30] Orłowska E, Rewitzky I. Context algebras, context frames, and their discrete duality. In: Peters JF, Skowron A, Rybiński R, editors. Transactions of Rough Sets IX. vol. 5390 of Lecture Notes in Computer Science. Springer Berlin; 2008. p. 212–229. ISBN: 978-3-540-89875-7. doi:10.1007/978-3-540-89876-4 13.
  • [31] Düntsch I, Orłowska E. A discrete duality between apartness algebras and apartness frames. Journal of Applied Non-Classical Logic. 2008;18(2-3):213–227. doi:10.3166/JANCL.18.213-227.
  • [32] Orlowska E, Rewitzky I. Discrete Duality for Relation Algebras and Cylindric Algebras. In: Berghammer R, Jaoua AM, Möller B, editors. Relations and Kleene Algebra in ComputerScience. vol. 5827 of Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. p. 291–305. ISBN: 978-3-642-04638-4. doi:10.1007/978-3-642-04639-1 20.
  • [33] Orłowska E, Rewitzky I. Algebras for Galois-style connections and their discrete duality. Fuzzy Sets and Systems. 2010;161(9):1325–1342. doi:10.1016/j.fss.2009.12.013.
  • [34] Orłowska E, Rewitzky I. Discrete dualities for Heyting algebras with operators. Fundamenta Informaticae. 2007;81:275–295.
  • [35] Orłowska E, Radzikowska AM. Representation theorems for some fuzzy logics based on residuated nondistributive lattices. Fuzzy Sets and Systems. 2008;159:1247–1259. doi:10.1016/j.fss.2007.12.009.
  • [36] Orłowska E, Radzikowska AM. Relational representability for algebras of substructural logics. In: Mac-Caull W, Winter M, Düntsch I, editors. Relational Methods in Computer Science. vol. 3929 of Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2006. p. 212–226. ISBN: 978-3-540-33339-5. doi:10.1007/11734673 2.
  • [37] Orłowska E, Radzikowska AM. Discrete duality for some axiomatic extensions of MTL algebras. In: Cintula P, Hanikowá Z, Svejdar V, editors. Witnessed Years. Essays in Honour of Petr Hájek. College Publications, King’s College London; 2009. p. 329–344. ISBN: 978-1-90987-63-5.
  • [38] Orłowska E, Radzikowska AM. Knowledge Algebras and Their Discrete Duality. In: Skowron A, Suraj Z, editors. Rough Sets and Intelligent Systems – Professor Zdzisław Palak in Memoriam. vol. 43 of Intelligent Systems Reference Library. Springer Berlin Heidelberg; 2013. p. 7–20. ISBN: 978-3-642-30340-1. doi:10.1007/978-3-642-30341-8 2.
  • [39] Mućka A, Radzikowska AM. Duality via truth for distributive bilattices; 2016. Submitted.
  • [40] Moisil GC. Recherches sur l’alg`ebre de la logique. Annales Scientifiques de l’Universit´e de Jassy. 1935;22:1–117.
  • [41] Düntsch I, Orłowska E. Beyond modalities: sufficiency and mixed algebras. In: Orłowska E, Szałas A, editors. Relational Methods in Computer Science Applications. vol. 65 of Studies in Fuzziness and Soft Computing. Physica-Verlag HD; 2001. p. 263–285. ISBN: 978-3-662-00362-6. doi:10.1007/978-3-7908-1828-4 16.
  • [42] Schweizer B, Sklar A. Probabilistic Metric Spaces. Amsterdam: North Holland; 1983. ISBN: 0-486-44514-3.
  • [43] Stone MH. Topological representation of distributive lattices and Brouwerian logics. Casopis pro pestování matematiky a fysiky. 1938;67(1):1–25. Available from: http://dml.cz/dmlcz/124080.
  • [44] Esteva F, Godo L. Monoidal t-norm based logic: towards a logic for left–continuous t–norms. Fuzzy Sets and Systems. 2001;124(3):271–288. doi:10.1016/S0165-0114(01)00098-7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc1553d7-0700-4956-b00b-9ff22e71962f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.