PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stripe segmentation of oceanic internal waves in SAR images based on Gabor transform and K-means clustering

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Oceanic internal waves are an active ocean phenomenon that can be observed, and their relevant characteristics can be acquired using synthetic aperture radar (SAR). The locations of oceanic internal waves must be determined first to obtain the important parameters of oceanic internal waves from SAR images. An oceanic internal wave segmentation method with integrated light and dark stripes was described in this study. To extract the SAR image characteristics of oceanic internal waves, the Gabor transform was initially used, and then the K-means clustering algorithm was used to separate the light (dark) stripes of oceanic internal waves from the background in the SAR images. The regions of the dark (light) stripes were automatically determined based on the differences between the three classes, that is, the dark stripes, light stripes, and background area. Finally, the locations of the dark (light) stripes were determined by shifting a given distance along the normal direction of the long side with the minimum bounding rectangle of the light (dark) stripes. The best segmentation results were obtained based on the intersection over the union of the images, and the accuracy of segmentation was verified. Furthermore, the effectiveness and practicability of the proposed method in the light and dark stripe segmentation of SAR images of oceanic internal waves were illustrated. The proposed method prepares the foundation for future inversion studies of oceanic internal waves.
Czasopismo
Rocznik
Strony
548--555
Opis fizyczny
Bibliogr. 20 poz., fot., tab., wykr.
Twórcy
autor
  • College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, China
  • College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, China
  • Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
autor
  • College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing, China
autor
  • College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, China
Bibliografia
  • 1. Bao, S., Meng, J., Sun, L., Liu, Y., 2020. Detection of ocean internal waves based on Faster R-CNN in SAR images. J. Ocean. Limnol. 38 (1), 55-63. https://doi.org/10.1007/s00343-019-9028-6
  • 2. Clausi, D.A., Jernigan, E.M., 2000. Designing Gabor filters for optimal texture separability. Pattern Recogn. 33 (11), 1835-1849. https://doi.org/10.1016/S0031-3203(99)00181-8
  • 3. Dong, D., Yang, X., Li, X., Li, Z., 2016. SAR Observation of Eddy Induced Mode-2 Internal Solitary Waves in the South China Sea. IEEE T. Geosci. Remote 54 (11), 6674-6686. https://doi.org/10.1109/tgrs.2016.2587752
  • 4. Gabor, D., 1946. Theory of communication. Part 1: The analysis of information. J. Inst. Electr. Eng. Pt. III Radio Comm. Eng. 93 (26), 429-441. https://doi.org/10.1049/ji-3-2.1946.0074
  • 5. Jain, A.K., Farrokhnia, K., 1991. Unsupervised texture segmentation using Gabor filters. Pattern Recogn. 24 (12), 1167-1186. https://doi.org/10.1016/0031-3203(91)90143-s
  • 6. Kao, C.C.,Lee, L.H., Tai, C.C., Wei, Y.C., 2007. Extracting the ocean surface feature of nonlinear internal solitary waves in MODIS satellite images. In: International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 1, 27-30. https://doi.org/10.1109/IIHMSP.2007.4457485
  • 7. Li, Z., Guo, B., Ren, X., Liao, N.N., 2021. Vertical interior distance ratio to minimum bounding rectangle of a shape. In: Abraham, A., Hanne, T., Castillo, O., Gandhi, N., Nogueira Rios, T., Hong, T.P. (Eds.), Hybrid Intelligent Systems. HIS 2020. Advances in Intelligent Systems and Computing. Springer, Cham Vol. 1375. https://doi.org/10.1007/978-3-030-73050-5_1
  • 8. Li, X.F., Liu, B., Zheng, G., Ren, Y., Zhang, S., Liu, Y.J., Gao, L., Liu, Y.H., Zhang, B., Wang, F., 2020. Deep learning-based information mining from ocean remote sensing imagery. Natl. Sci. Rev. 7 (10), 1584-1605. https://doi.org/10.1093/nsr/nwaa047
  • 9. Lindsey, D.T., Nam, S., Miller, S.D., 2018. Tracking oceanic nonlinear internal waves in the Indonesian seas from geostationary orbit. Remote Sens. Environ. 208, 202-209. https://doi.org/10.1016/j.rse.2018.02.018
  • 10. MacQueen, J., 1967. Some methods for classification and analysis of multivariate observations. Proc. Fifth Berkeley Symp. Math. Statistics Probab. 1, 281-298.
  • 11. Malik, J., Perona, P., 1990. Preattentive texture discrimination with early vision mechanisms. J. Opt. Soc. Am. 7 (5), 923-932. https://doi.org/10.1364/josaa.7.000923
  • 12. Rodenas, J.A., Garello, R., 1998. Internal wave detection and location in SAR images using wavelet transform. IEEE T. Geosci. Remote 36 (5), 1494-1507. https://doi.org/10.1109/36.718853
  • 13. Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (Eds.), Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015. MICCAI 2015.
  • 14. Lecture Notes in Computer Science, Vol. 9351. Springer, Cham, 234-241. https://doi.org/10.1007/978-3-319-24574-4_28
  • 15. Rodenas, J.A., Garello, R., 1997. Wavelet analysis in SAR ocean image profiles for internal wave detection and wavelength estimation. IEEE T. Geosci. Remote 35 (4), 933-945. https://doi.org/10.1109/36.602535
  • 16. Simonin, D., Tatnall, A.R., Robinson, I.S., 2009. The automated detection and recognition of internal waves. Int. J. Remote Sens. 30 (17), 4581-4598. https://doi.org/10.1080/01431160802621218
  • 17. Wang, S., Dong, Q., Duan, L., Sun, Y., Jian, M., Li, J., Dong, J., 2019. A fast internal wave detection method based on PCANet for ocean monitoring. J. Intell. Syst. 28 (1), 103-113. https://doi.org/10.1515/jisys-2017-0033
  • 18. Zhang, J.G., Tan, T.N., Ma, L., 2002. Invariant texture segmentation via circular Gabor filters. In: 2002 International Conference on Pattern Recognition, Vol. 2, IEEE, Quebec City, QC, Canada, 901-904. https://doi.org/10.1109/ICPR.2002.1048450
  • 19. Zheng, Y.G., Zhang, H.S., Qi, K.T., Ding, L.Y., 2021a. Stripe segmentation of oceanic internal waves in SAR images based on SegNet. Geocarto Int. 37 (25), 8567-8578. https://doi.org/10.1080/10106049.2021.2002430
  • 20. Zheng, Y.G., Zhang, H.S., Wang, Y.Q., 2021b. Stripe detection and recognition of oceanic internal waves from synthetic aperture radar based on support vector machine and feature fusion. Int. J. Remote Sens. 42 (17), 6710-6728. https://doi.org/10.1080/01431161.2021.1943040
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023). (PL)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc12fdf9-8029-409a-b39c-c8b478bca978
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.