PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling of experimental data for the adsorption of methyl orange from aqueous solution using a low cost activated carbon prepared from Prosopis juliflora

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the feasibility for the removal of methyl orange (MO) dye from aqueous solution using an activated carbon prepared from Prosopis juliflora bark. Batch adsorption experiments were carried out as a function of pH, contact time, adsorbate concentration, adsorbent dosage and temperature. The commonly applicable isotherms namely Freundlich and Langmuir equations are used for the prediction of isotherm parameters. A comparison of linear least-square method and a trial-and-error non-linear method are examined in Freundlich and Langmuir (Four forms) isotherms. The nature of adsorption isotherm feasibility was evaluated with dimensionless separation factors (RL). The dynamics of adsorption process was analyzed with Lagergren’s Pseudo-first order and Pseudo-second order kinetic equations. Thermodynamic parameters like the change in enthalpy (ΔHo), change in entropy (ΔSo) and change in Gibbs free energy (ΔGo) were evaluated and ΔGo shows a negative value whereas ΔHo shows the positive value indicating that the adsorption process was spontaneous and endothermic in nature. The functional group characterization of the adsorbent was done using Fourier transform infrared spectroscopy (FTIR). The thermal stability of activated carbon was analyzed using Thermo gravimetric analysis (TGA) and Differential thermal analysis (DTA).
Rocznik
Strony
29--39
Opis fizyczny
Bibliogr. 46 poz., rys., wykr., tab.
Twórcy
autor
  • Department of Chemistry, Anna University Chennai, University College of Engineering, Pattukottai, Rajamadam-614 701, India
  • Department of Chemistry, Anna University Chennai, University College of Engineering, Pattukottai, Rajamadam-614 701, India
Bibliografia
  • 1. Mohan, N., Balasubramanian, N. & Basha, C.A. (2007). Electrochemical oxidation of textile wastewater and its reuse. J. Hazardous materials. 147, 644-651. http://dx.doi.org/10.1016/j.jhazmat.2007.01.063.
  • 2. Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: a review. Process Biochem. 40, 997-1026. http://dx.doi.org/10.1016/j.procbio.2004.04.008.
  • 3. Karadag, D., Akgul, E., Tok, S., Erturk, F., Kaya, M.A. & Turan, M. (2007). Basic and reactive dye removal using natural and modified zeolites. J. Chem. & Engg. Data. 52, 2436-2441. DOI: 10.1021/je7003726.
  • 4. Fewson, C.A. (1988). Biodegradation of xenobiotic and other persistent compounds: the causes of recalcitrance. TrendsBiotechnol. 6 (7), 148-153. http://dx.doi.org/10.1016/0167-7799(88)90084-4.
  • 5. Li Li, Wenkui Dai, Peng Yu, Jian Zhao & Yinbo Qu. (2009). Decolorisation of synthetic dyes by crude laccase from Rigidoporus lignosus W1. J. Chem. Tech. and Biotechnol. 84 (3), 399-404. DOI: 10.1002/jctb.2053.
  • 6. Poots, V.J.P., McKay, J.J., & Healy, J.J. (1976). The removal of acid dye from effluent using natural adsorbents-I peat. Water Res.10, 1061-1066. http://dx.doi.org/10.1016/0043-1354(76)90036-1.
  • 7. Ohea, T., Watanabeb, T. & Wakabayashic, T. (2004). Mutagens in surfacewaters: A review. Mutat. Res. 567 (2-3),109-149. http://dx.doi.org/10.1016/j.mrrev.2004.08.003.
  • 8. McGeorge, L.J., Louis, B., Atherholt, T.B. & McGarrity, G.J. (1985). Mutagenicity analyses of industrial effluents: results and considerations for integration into water pollution control programs, In Short -term bioassays in the analysis of complex environmental mixtures, Vol. IV, Waters, M.D., Sandhu, S.S., Lewtas, J., Claxton, L., Strauss, G. and Nesnow, S. (Eds.), Plenum Press, New York: 247-268.
  • 9. Mathur, N., Krishnatrey, R., Sharma, S., Pathak, S. & Sharma, K.P. (2003). Certain haematological responses in Swiss albino mice following exposure to textile dye wastewater. J. Environ Biol. 24 (2), 161-164. http://www.ncbi.nlm.nih.gov/pubmed/12974457.
  • 10. Gong, R., Ding, Y., Li, M. (2005). Utilization of powdered peanut hull as biosorbent for removal of anionic dyes from aqueous solution. Dyes and Pigm. 64 (3), 187-192. http://dx.doi.org/10.1016/j.dyepig.2004.05.005.
  • 11. Vijayakumar, G., Tamilarasan, R., Dharmendirakumar, M. (2012). Adsorption, Kinetic, Equilibrium and Thermodynamic studies on the removal of basic dye Rhodamine-B from aqueous solution by the use of natural adsorbent perlite. J. Mater. andEnviron. Sci. 3 (1): 157-170. http://www.jmaterenvironsci.com/Document/vol3/16-JMES-139-2011-Tamilarasan.pdf.
  • 12. Uddin, Md.T., Rukanuzzaman, Md., Khan, Md. M.R., Islam. Md. A. (2009). Adsorption of methylene blue from aqueous solution by jackfruit (Artocarpus heteropyllus) leaf powder: A fixed-bed column study. J. Environ. Management. 90 (11), 3443-3450. http://dx.doi.org/10.1016/j.jenvman.2009.05.030.
  • 13. Suresh Gupta, Babu, B.V. (2009). Modeling, simulation, and experimental validation for continuous Cr(VI) removal from aqueous solutions using sawdust as an adsorbent. Biores. Technol. 100 (23), 5633-5640. http://dx.doi.org/10.1016/j.biortech.2009.06.025.
  • 14. Gong, R., Zhang, X., Liu, H., Sun, Y. & Liu, B. (2007). Uptake of cationic dyes from aqueous solution by biosorption onto granular kohlrabi peel. Biores. Tech. 98 (6), 1319-1323. http://dx.doi.org/10.1016/j.biortech.2006.04.034.
  • 15. Gupta, V.K., Ali, I. (2007). Adsorbents for Water Treatment: Development of Low-Cost Alternatives to Carbon. In Encyclopedia of Surface and Colloid Sci. Hubbard, A.,Ed.; MarcelDekker, New York. 1, 149-184. DOI: 10.1081/E- -ESCS-120012606.
  • 16. Dogan, M., Abak, H., Alkan, M. (2009). Adsorption of methylene blue onto hazelnut shell: Kinetics, mechanism and activation parameters. J. Hazard. Mater. 164, 172-181. http://dx.doi.org/10.1016/j.jhazmat.2008.07.155.
  • 17. Thamilarasu, P., Vijaya Kumar, G., Tamilarasan, R., Sivakumar V., & Karunakaran, K. (2011). Kinetic, Equilibrium and Thermodynamic studies on the removal of Cr(VI) by activated carbon prepared from Cajanus Cajan(L) Milsp seed shell. Polish J. Chem. Tech.13 (4), 1-DOI:10.2478/v10026-011-0041-6.
  • 18. Vijaya Kumar, G., Tamilarasan, R. & Dharmendra Kumar, M. (2011). Removal of Cd2+ ions from aqueous solution using live and dead Bacillus Subtilis. Chem. Engg. Res. Bul. 15, 18-24. DOI: http://dx.doi.org/10.3329/cerb.v15i1.6618.
  • 19. Vijayakumar, G., Yoo, C.K., Elango, K.P. & Dharmendra Kumar, M. (2010). Adsorption Characteristics of Rhodamine B from Aqueous Solution onto Baryte. Clean-Soil, Air, Water. 38 (2), 202-209. DOI: 10.1002/clen.200900125.
  • 20. Pollard, S.J.T., Fowler, G.D., Sollars, C.J. & Perry, R. (1992). Low-cost adsorbents for waste and wastewater treatment: A Review. Sci. Total Environ. 116, 31-52. http://dx.doi.org/10.1016/0048-9697(92)90363-W.
  • 21. Lee, C.K. & Low, K.S. (1989). Removal of copper from solution using moss. Environ. Tech. Lett. 10, 395-404. DOI: 10.1080/09593338909384755.
  • 22. Ponnusami, V., Vikram, S. & Srivastava, S.N. (2008). Guava (Psidium guajava) leaf powder: Novel adsorbent for removal of methylene blue from aqueous solutions. J. Hazard. Mater. 152, 276-286. http://dx.doi.org/10.1016/j.jhazmat.2007.06.107.
  • 23. Nandi, B.K., Goswami, A., Purkait, M.K. (2009). Adsorption characteristics of brilliant green dye on kaolin. J. Hazard. Mater. 161, 387-395. http://dx.doi.org/10.1016/j.jhazmat.2008.03.110.
  • 24. Lagergren, S. (1898). Zur theorie der sogenannten adsorption gelˆster stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar. 24 (4), 1-39. http://www.biodiversitylibrary.org/item/48741.
  • 25. Langmuir, I. (1916). The constitution and fundamental properties of Solids and Liquids. PART I. Solids. J. Am. Chem. Soc. 38, 2221-2295. DOI: 10.1021/JA02268A002.
  • 26. Freundlich, H.M.F. (1906). Adsorption in solutions. J. Phys.Chem. 57, 384-410.
  • 27. Panda, G.C., Das, S.K. & Guha, A.K. (2008). Jute stick powder as a potential biomass for the removal of congo red and rhodamine B from their aqueous solution. J. Hazard. Mater. 164, 374-379. http://dx.doi.org/10.1016/j.jhazmat.2008.08.015.
  • 28. Qiu, M., Qian, C., Xu, J., Wu, J. & Wang, G. (2009). Studies on the adsorption of dyes into clinoptilolite. Desalination. 243, 286-292. http://dx.doi.org/10.1016/j.desal.2008.04.029.
  • 29. Namasivayam, C. & Sumithra, S. (2005). Removal of direct red 12B and methylene blue from water by adsorption onto Fe (III)/Cr (III) hydroxide, an industrial solid waste. J. Environ. Manage. 74, 207-215. http://dx.doi.org/10.1016/j.jenvman.2004.08.016.
  • 30. Subha, R. & Namasivayam, C. (2011). Removal and recovery of pentachlorophenol onto low cost nano porous carbon-kinetics and isotherms. J. Solid Waste Tech. Mgt. 37 (3). 168-178. DOI:10.5276/JSWTM.2011.168.
  • 31. Asadullah, M., Asaduzzaman, M., Kabir, M.S., Mostofa, M.G. & Miyazawa, T. (2010). Chemical and structural evaluation of activated carbon prepared from jute sticks for Brilliant Green dye removal from aqueous solution. J. Hazard. Mater. 174, 437-443. http://dx.doi.org/10.1016/j.jhazmat.2009.09.072.
  • 32. Vijayakumar, G., Ramalingam, P., Kim, M.J., Yoo, C.K. & Dharmendra Kumar, M. (2010). Removal of acid dye (violet 54) and adsorption kinetics model of using musa spp. waste: A low-cost natural sorbent material. Korean J. Chem. Engg. 27 (5), 1469-1475. DOI: 10.1007/s11814-010-0226-3.
  • 33. Mondal, S. (2008). Methods of Dye Removal from Dye House Effluent-An Overview. Environ. Engg. Sci. 25, 383-396. DOI:10.1089/ees.2007.0049.
  • 34. Aksakal, O., Ucun, H. (2010). Equilibrium, kinetic and thermodynamic studies of the biosorption of textile dye (Reactive Red 195) onto Pinus sylvestris L. J. Hazard. Mater. 181, 666-672. http://dx.doi.org/10.1016/j.jhazmat.2010.05.064.
  • 35. Lorenc Grabowska, E., Gryglewicz, G. (2007). Adsorption characteristics of Congo Red on coal-based mesoporous activated carbon. Dyes & Pigments. 74 (1), 34-40. http://dx.doi.org/10.1016/j.dyepig.2006.01.027.
  • 36. Cooper, P.J. (1993). Removing colour from dyehouse waste waters - a critical review of technology available. Societyof Dyers & Colourists 109, 97. DOI: 10.1111/j.1478-4408.1993. tb01536.x.
  • 37. Varsha Srivastava, Weng, C.H., Singh, V.K. & Sharma, Y.C. Adsorption of Nickel Ions from Aqueous Solutions by Nano Alumina: Kinetic, Mass Transfer, and Equilibrium Studies. J. Chem. Eng. Data 2011, 56, 1414-1422. DOI:10.1021/je101152b.
  • 38. Hameed, B.H. & Ahmad, A.A. (2009). Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. J. Hazard. Mater. 164, 870-875. http://dx.doi.org/10.1016/j.jhazmat.2008.08.084.
  • 39. Webi, T.W. & Chakravorti, R.K. (1974). Pore and solid diffusion models for fixed-bed adsorbers. AIChE J. 20, 228-238. DOI: 10.1002/aic.690200204.
  • 40. Xiong, L., Yang, Y., Mai, J., Sun, W., Zhang, C., Wei, D., Chen, Q. & Ni, J. (2010). Adsorption behavior of methylene blue onto titanate nanotubes. Chem.Eng. J., 156, 313-320. http://dx.doi.org/10.1016/j.cej.2009.10.023.
  • 41. Cheung, W.H., Szetob, Y.S., & McKay, G. (2007). Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bio Res. Technol. 98, 2897-2904. http://dx.doi.org/10.1016/j.biortech.2006.09.045.
  • 42. Ho, Y.S. & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochem. 34 (5), 451-465. http://dx.doi.org/10.1016/S0032-9592(98)00112-5.
  • 43. Ho, Y.S & McKay, G. (1999). Comparative sorption kinetic studies of dye and aromatic compounds onto fly ash. J. Env. Sci. Health Part A-Toxic/Hazardous Substances and EnvironmentalEngineering 34 (5), 1179-1204. DOI:10.1080/10934529909376889.
  • 44. Longhinotti, E., Pozza, F., Furlan, L., Maria de, M., Sanchez, D., Klug, M., Laranjeira, M.C.M. & Favere, V.T. (1998). Adsorption of anionic dyes on the biopolymer Chitin. J. Braz. Chem. Soc.; 9 (5), 435-440. http://jbcs.sbq.org.br/jbcs/1998/vol9_n5/10.pdf.
  • 45. Vasanth Kumar, K. & Sivanesan, S. (2005). Comparison of linear and non-linear method in estimating the sorption isotherm parameters for safranin onto activated carbon. J. Hazardous Mater. 123, 288-292. http://dx.doi.org/10.1016/j.jhazmat.2005.03.040.
  • 46. Lunhong, Ai, Ming, Li. & Long, Li. (2011). Adsorption of Methylene Blue from Aqueous Solution with Activated Carbon/ Cobalt Ferrite/Alginate Composite Beads: Kinetics, Isotherms, and Thermodynamics. J. Chem. Eng. D. 56, 3475-3483. DOI: 10.1021/je200536h.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc10cc0c-a785-4662-a692-e5d1b8c8630a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.