Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The main goal of carried out tests were the impact of physicochemical properties of surface layers on the course of processes taking place on the surface of implants made of metallic biomaterials used in the bone system. As a precursor of ZnO, diethylzinc (DEZ) has been used, which reacted with water enabling the deposition of thin films. The chamber temperature was as follows—T = 200°–300 °C. The number of cycles was 500, 1000, and 1500. In the first stage, pitting corrosion test was carried out. Corrosion resistance has been tested under conditions simulating tissue environment. Moreover, the created layers were tested using electrochemical impedance spectroscopy (EIS). The conducted electrochemical tests showed the beneficial effect of the ZnO layer on the substrate made of 316 LVM steel, as evidenced by the obtained parameters describing the corrosion resistance. Furthermore, tests were performed on mechanical properties (scratch test), surface morphology (SEM and AFM method), and physical properties (wettability and thickness layers) for samples with different surface treatments. The investigations of the surface morphology of the applied ZnO layer using the ALD method showed a tendency to inherit the substrate independently of the used application parameters. On the other hand, the tests of adhesion to the substrate showed that the number of cycles of the application process has a fundamental impact on the adhesion of the applied layer to the substrate. Summarizing tests have clearly shown that the number of cycles and temperature in the case of the ZnO coating is significant and positively influences the increase of electrochemical, mechanical, and physical properties of layers.
Czasopismo
Rocznik
Tom
Strony
1--15
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41‑800 Zabrze, Poland
autor
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41‑800 Zabrze, Poland
autor
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41‑800 Zabrze, Poland
autor
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41‑800 Zabrze, Poland
autor
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41‑800 Zabrze, Poland
autor
- Faculty of Chemistry, Silesian University of Technology, Krzywoustnego 6, 44‑100 Gliwice, Poland
autor
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44‑100 Gliwice, Poland
autor
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44‑100 Gliwice, Poland
autor
- Department of Technology of Biological Active Substances, Pharmacy and Biotechnolog, Lviv Polytechnic National University, Bandera 12, Lviv 79013, Ukraine
Bibliografia
- [1] Rios A, Rodriguez JM, Munitiz V, Alcatraz P, Perez-Flores D, Parrilla P. Antibiotic prophylaxis in incisional hernia repair using a prosthesis. Hernia. 2011;5:148–52.
- [2] Buri C. Posttraumatische osteitis. Bern/Stuttgart/Wien: Huber; 1979.
- [3] Klemm KW. Gentamicin-PMMA Chains (Septopal Chains) for the Local treatment of chronic osteomyelitis. In: Eberle H, editor. Reconstruction surgery and traumatology. Basel: Karger Verlag; 1989.
- [4] Fitzgerald, RH. Pathogenesis of musculoskeletal sepsis. In: Musculoskeletal infections. Jear Book Medical Publishers Inc, Chicago, London (1986).
- [5] Walenkamp GHIM. Chronic osteomyelitis. Acta Orthop Scand. 1997;68(5):497–506.
- [6] Frommelt L. Periprosthetic infection: bacteria and the interfaces between prosthesis and bone. In: Implant special, vol. 19. Berlin, Heidelberg: Springer-Verlag; 2007. p. 195–201.
- [7] Tatiana G, Volova G. Antibacterial properties of films of cellulose composites with silver nanoparticles and antibiotics. Polym Test. 2017;65:54–68.
- [8] Senthil B, Devasena T, Prakash B, Rajasekar A. Non-cytotoxic effect of green synthesized silver nanoparticles and its antibacterial activity. J Photochem Photobiol, B. 2017;177:1–7.
- [9] Ferraris M. Antibacterial silver nanocluster/silica composite coatings on stainless steel. Appl Surf Sci. 2017;396(28):1546–55.
- [10] Baláž M. Bio-mechanochemical synthesis of silver nanoparticles with antibacterial activity. Adv Powder Technol. 2017;28(12):3307–12.
- [11] Faraji M, Mohaghegh N, Abedini A. Ternary composite of TiO2 nanotubes/Ti plates modified by g-C3N4 and SnO2 with enhanced photocatalytic activity for enhancing antibacterial and photocatalytic activity. J Photochem Photobiol B: Biol. 2018;178:124–32.
- [12] Díez-Pascual A, Díez-Vicente A. Antibacterial SnO2 nanorods as efficient fillers of poly(propylenefumarate-co-ethylene glycol) biomaterials. Mater Sci Eng, C. 2017;78:806–16.
- [13] Kiro A, Bajpai J, Bajpai A. Designing of silk and ZnO based antibacterial and noncytotoxic bionanocomposite films and study of their mechanical and UV absorption behawior. J Mech Behav Biomed Mater. 2017;65:281–94.
- [14] Marques S, Carvalho I, Henriques M, Polcar T, Carvalho S. PVD-grown antibacterial Ag-TiN films on piezoelectric PVDF substrates for sensor applications. Surf Coat Technol. 2015;281:117–24.
- [15] ASTM F2129 standard test method for conducting cyclic potentiodynamic polarization measurements to determine the corrosion susceptibility of small implant devices.
- [16] PN-EN ISO 20502:2016- High quality ceramics (advanced ceramics, technical advanced ceramics)-determination of adhesion of ceramic coatings in the scratch test.
- [17] Basiaga M, Staszuk M, Walke W, Opilski Z. Mechanical properties of atomic layer deposition (ALD) TiO2 layers on stainless steel substrates. Materialwiss Werkstofftech. 2016;47:512–20.
- [18] Basiaga M, Walke W, Staszuk M, Kajzer W, Kajzer A, Nowińska K. Influence of ALD process parameters on the physical and chemical properties of the surface of vascular stenst. Arch Civil Mech Eng. 2017;17(1):32–42.
- [19] Marin E, Guzman L, Lanzutti A, Ensinger W, Fedrizzi L. Multilayer Al2O3/TiO2 atomic layer deposition coatings for the corrosion protection of stainless steel. Thin Solid Films. 2012;522:283–8.
- [20] Aarik L, Arroval T, Rammula R, Mändar H, Sammelselg V, Aarik J. Atomic layer deposition of TiO2 from TiCl4 and O3. Thin Solid Films. 2013;542:100–7.
- [21] Kerasidou AP, Bardakas A, Botzakaki M, Georga SN. Growth of ZnO nanowires on seeding layers deposited by ALD: the influence of process parameters. Microelectron Eng. 2019;217(15):111–21.
- [22] Janocha E, Pettenkofer C. ALD of ZnO using diethylzinc as metal-precursor and oxygen as oxidizing agent. Appl Surf Sci. 2011;257:10031–5.
- [23] Trought M, Wentworth I, Chathura de Alwis W, Leftwich T, Perrine K. Influence of surface etching and oxidation on the morphological growth of Al2O3 by ALD surface. Science. 2019;690:121479.
- [24] Curtis A, Wilkinson C. Topographical control of cells. Biomaterials. 1997;18:1573–83.
- [25] Szewczenko J, Jaglarz J, Basiaga M, Kurzyk J, Skoczek E, Paszenda Z. Topography and thickness of passive layers on anodically oxidized Ti6Al4V alloys. Przegląd Elektrotechniczny. 2012;88(12B):228–31.
- [26] Xu LC. Effect of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials. 2007;28:3273–83.
- [27] Kim MS, Khang G, Lee HB. Gradient polymer surfaces for biomedical applications. Progress Polym Sci. 2008;33(1):138–64.
- [28] Kerasidou A, Bardakas A, Botzakaki M, Georga SN, Krontiras CA, Mergia K, Psycharis VP, Tsamis C. Growth of ZnO nanowires on seeding layers deposited by ALD: The influence of process parameters. Microelectron Eng. 2019;217:11091.
- [29] Graniel O, Fedorenko V, Viter R, Iatsunskyi I, Nowaczyk G, Weber N, Załęski K, Jurga S, Smyntyna V, Miele P, Ramanavicius A, Balm S, Bechelany M. Optical properties of ZnO deposited by atomic layer deposition (ALD) on Si nanowires. Mater Sci Eng, B. 2018;236–237:139–46.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc0748a4-291b-4a7c-b598-e0b3e35eadd3