Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Most estimators of the shape parameter of generalized Gaussian distribution (GGD) assume asymptotic case when there is available infinite number of observations, but in the real case, there is only available a set of limited size. The most popular estimator for the shape parameter, i.e., the maximum likelihood (ML) method, has a larger variance with a decreasing sample size. A very high value of variance for a very small sample size makes this estimation method very inaccurate. A new fast approximated method based on the standardized moment to overcome this limitation is introduced in the article. The relative mean square error (RMSE) was plotted for the range 0.3-3 of the shape parameter for comparison with other methods. The method does not require any root finding, any long look-up table or multi step approach, therefore it is suitable for real-time data processing.
Rocznik
Tom
Strony
405--411
Opis fizyczny
Bibliogr. 14 poz., wykr.
Twórcy
autor
- West-Pomeranian University of Technology in Szczecin, Chair of Signal Processing and Multimedia Engineering, 10 26-Kwietnia St., 71-126 Szczecin, Poland
Bibliografia
- [1] Y. Du, “Ein sph¨arisch invariantes Verbunddichtemodell f¨ur Bildsignale”, Archiv f ¨ur Elektronik und ¨Ubertragungstechnik, AE¨U-45 (3), 148-159 (1991).
- [2] S.G. Mallat, “A theory of multiresolution signal decomposition: the wavelet representation”, Trans. Pattern Anal. Mach. Intell., IEEE 11 (7), 674-693 (1989).
- [3] B. Aiazzi, L. Alparone, and S. Baronti, “Estimation based on entropy matching for generalized Gaussian PDF modeling”, Signal Process. Lett., IEEE 6 (6), 138-140 (1999).
- [4] S. Meignen and H. Meignen, “On the modeling of small sample distributions with generalized Gaussian density in a maximum likelihood framework”, Image Processing, IEEE Trans. 15 (6), 1647-1652 (2006).
- [5] R. Krupiński and J. Purczyński, “Modeling the distribution of dct coefficients for jpeg reconstruction”, Image Commun. 22 (5), 439-447, DOI: 10.1016/j.image.2007.03.003 (2007).
- [6] R. Krupiński and J. Purczyński, “Approximated fast estimator for the shape parameter of generalized Gaussian distribution”, Signal Process. 86 (2), 205-211, DOI:10.1016/j.sigpro.2005.05.003 (2006).
- [7] M. Novey, T. Adali, and A. Roy, “A complex generalized Gaussian distribution - characterization, generation, and estimation”, Signal Processing, IEEE Trans. 58 (3), 1427-1433, March (2010).
- [8] S. Yu, A. Zhang, and H. Li, “A review of estimating the shape parameter of generalized Gaussian distribution”, J. Comput. Information Systems 8 (21), 9055-9064 (2012), [Online] available: http://www.jofcis.com/downloadpaper.aspx?id=2756&name=201282190559064.pdf
- [9] T. Marciniak, R. Weychan, A. Stankiewicz, and A. Dąbrowski, “Biometric speech signal processing in a system with digital signal processor”, Bull. Pol. Ac.: Tech. 62 (2), 589-594, DOI: 10.2478/bpasts-2014-0064 (2014).
- [10] M. Mazur, J. Domaradzki, and D. Wojcieszak, “Optical and electrical properties of (Ti-V)Ox thin film as n-type Transparent Oxide Semiconductor”, Bull. Pol. Ac.: Tech. 62 (3), 583-588, DOI: 10.2478/bpasts-2014-0063 (2014).
- [11] G. Box and G.C. Tiao, Bayesian Inference in Statistical Analysis, Addison Wesley, New York, 1973.
- [12] F.W.J. Olver, Asymptotics and Special Functions, Academic Press, New York, 1974.
- [13] M.K. Varanasi and B. Aazhang, “Parametric generalized Gaussian density estimation”, J. Acoust. Soc. Amer. 86 (4), 1404-1415 (1989).
- [14] K. Kokkinakis and A.K. Nandi, “Exponent parameter estimation for generalized Gaussian probability density functions with application to speech modeling”, Signal Process. 85 (9), 1852-1858, DOI:10.1016/j.sigpro.2005.02.017 (2005).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc040bbe-1ac8-4dd6-ac5b-fe3cb598d2c3