Identyfikatory
Warianty tytułu
Inteligentny system przewidywania sprzedaży detalicznej nowych produktów odzieżowych uwzględniający wyprzedaż
Języki publikacji
Abstrakty
Improving the accuracy of forecasting is crucial but complex in the clothing industry, especially for new products, with the lack of historical data and a wide range of factors affecting demand. Previous studies more concentrate on sales forecasting rather than demand forecasting, and the variables affecting demand remained to be optimized. In this study, a two-stage intelligent retail forecasting system is designed for new clothing products. In the first stage, demand is estimated with original sales data considering stock-out. The adaptive neuro fuzzy inference system (ANFIS) is introduced into the second stage to forecast demand. Meanwhile a data selection process is presented due to the limited data of new products. The empirical data are from a Canadian fast-fashion company. The results reveal the relationship between demand and sales, demonstrate the necessity of integrating the demand estimation process into a forecasting system, and show that the ANFIS-based forecasting system outperforms the traditional ANN technique.
Poprawa dokładności prognozowania jest bardzo istotna, ale skomplikowana w przypadku przemysłu odzieżowego, zwłaszcza dla nowych produktów oraz szerokiego zakresu czynników wpływających na popyt. Wcześniejsze badania bardziej koncentrowały się na prognozowaniu sprzedaży, niż prognozowaniu popytu. Zmienne wpływające na popyt powinny zostać zoptymalizowane. W tym badaniu opracowano dwustopniowy inteligentny system prognozowania sprzedaży detalicznej przeznaczony dla nowych produktów odzieżowych. W pierwszym etapie, popyt jest określony za pośrednictwem oryginalnych danych dotyczących sprzedaży. Adaptacyjny neuronowy system danych rozproszonych (ANFIS) jest wprowadzony w drugim etapie do prognozowania popytu. Jednocześnie prezentowany jest proces selekcji danych. Dane empiryczne pochodzą z kanadyjskiej firmy.
Czasopismo
Rocznik
Strony
10--16
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
- College of Fashion and Design, Donghua University, Shanghai, China
- Faculty of Management, McGill University, Montreal, Canada
autor
- College of Public Administration, Huazhong Agricultural University, Wuhan, China
Bibliografia
- 1. Lenort R and Besta P. Hierarchical Sales Forecasting System for Apparel Companies and Supply Chains. Fibres and Textiles In Eastern Europe 2013; 21, 6(102): p. 7-11.
- 2. Şen A. The US fashion industry: A supply chain review. International Journal of Production Economics 2008; 114(2): p. 571-593.
- 3. Wong WK and Guo ZX. A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm. International Journal of Production Economics 2010; 128(2): p. 614-624.
- 4. Babuška R and Verbruggen H. Neuro-fuzzy methods for nonlinear system identification. Annual Reviews in Control 2003; 27(1): p. 73-85.
- 5. Mostard J, Teunter R and de Koster R. Forecasting demand for single-period products: A case study in the apparel industry. European Journal of Operational Research 2011; 211(1): p. 139-147.
- 6. Ozbek A, et al. Prediction of Turkey’s Denim Trousers Export Using Artificial Neural Networks and the Autoregressive Integrated Moving Average Model. Fibres & Textiles in Eastern Europe 2011; 19, 3, (86): p. 86.
- 7. Ureyen ME and Kadoglu H. The prediction of cotton ring yarn properties from AFIS fibre properties by using linear regression models. Fibres and Textiles in Eastern Europe 2007; 15, 4(63): p. 63.
- 8. Kuo RJ, Wu P and Wang C. An intelligent sales forecasting system through integration of artificial neural networks and fuzzy neural networks with fuzzy weight elimination. Neural networks 2002; 15(7): p. 909-925.
- 9. Frank C, et al. Forecasting women’s apparel sales using mathematical modeling. International Journal of Clothing Science and Technology 2003; 15(2): p. 107-125.
- 10. Hui CL et al. Learning–based fuzzy colour prediction system for more effective apparel design. International Journal of Clothing Science and Technology 2005; 17(5): p. 335-348.
- 11. Au K-F, Choi T-M and. Yu Y. Fashion retail forecasting by evolutionary neural networks. International Journal of Production Economics 2008; 114(2): p. 615- 630.
- 12. Wang F-K, Chang K-K and Tzeng C-W. Using adaptive network-based fuzzy inference system to forecast automobile sales. Expert Systems with Applications 2011; 38(8): p. 10587-10593.
- 13. Bektas Ekici B and Aksoy UT. Prediction of building energy needs in early stage of design by using ANFIS. Expert Systems with Applications 2011; 38(5): p. 5352-5358.
- 14. Aksoy A, Ozturk N and Sucky E. A decision support system for demand forecasting in the clothing industry. International Journal of Clothing Science and Technology 2012; 24(4): p. 221-236.
- 15. Gallien J, et al. Initial Shipment Decisions for New Products at Zara. Operations Research 2015; 63(2): p. 269-286.
- 16. Bergvall-Forsberg J and Towers N. Creating agile supply networks in the fashion industry: A pilot study of the European textile and clothing industry. Journal of the Textile Institute 2007; 98(4): p. 377-386.
- 17. Wecker WE. Predicting demand from sales data in the presence of stockouts. Management Science 1978; 24(10): p. 1043-1054.
- 18. Garro A. New product demand forecasting and distribution optimization: a case study at Zara. Massachusetts Institute of Technology, 2011.
- 19. Negnevitsky M. Artificial intelligence: a guide to intelligent systems. Pearson Education, 2005.
- 20. Jang J-SR. ANFIS: adaptive-network-based fuzzy inference system. Systems, Man and Cybernetics, IEEE Transactions on, 1993. 23(3): p. 665-685.
- 21. Thomassey S. Sales forecasts in clothing industry: The key success factor of the supply chain management. International Journal of Production Economics 2010; 128(2): p. 470-483.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bbfd8b5e-1f53-4750-8bb3-0b2edf641906