PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the share of natural gas in the total fuel supply dose on the combustion process in a CRDI engine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Natural gas is one of the potential combustion engine fuels whose proportion in the overall energy balance is expected to increase. Owing to some of its properties, its use requires a dual-fuel supply system; thus, the use of natural gas as a fuel for diesel engines is currently limited. Systems that supply gas fuel to diesel engines do not usually interfere with the engine control system. This solution significantly reduces system-installation costs. However, as demonstrated in the present study, it considerably changes the course of the combustion process, which increases thermal and mechanical loads. In this case, the combustion process can be controlled by changing the liquid fuel injection pressure or advancing the injection angle. This, however, requires interference with the engine control system.
Czasopismo
Rocznik
Strony
141--150
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
  • University of Warmia and Mazury in Olsztyn; M. Oczapowskiego 11, 10-719 Olsztyn, Poland
  • Military University of Technology; gen. S Kaliskiego 2, 00-908 Warsaw 46, Poland
  • Silesian University of Technology; Krasińskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology; Krasińskiego 8, 40-019 Katowice, Poland
Bibliografia
  • 1. McCaffery, C. & Zhu, H. & Tang, T. & Li, C. & Karavalakis, G. & Cao, S. & Oshinuga, A. & Burnette, A. & Johnson, K.C & Durbin, T.D. Real-world NO x emissions from heavy-duty diesel, natural gas, and diesel hybrid electric vehicles of different vocations on California roadways. Science of The Total Environment. 2021. Vol. 784(147224). DOI: https://doi.org/10.1016/j.scitotenv.2021.147224.
  • 2. Mikulski, M. & Wierzbicki, S. & Śmieja, M. & Matijošius, J. Effect of CNG in a fuel dose on compression-ignition engine’s combustion process. Transport. 2015. Vol. 30(2). P. 162-171. DOI: http://dx.doi.org/10.3846/16484142.2015.1045938.
  • 3. Shepel, O. & Matijošius, J. & Rimkus, A. & Duda, K. & Mikulski, M. Research of parameters of a compression ignition engine using various fuel mixtures of hydrotreated vegetable Oil (HVO) and Fatty Acid Esters (FAE). Energies. 2021. Vol. 14(3077). DOI: https://doi.org/10.3390/en14113077.
  • 4. Fabiś, P. DME as a fuel for SI engines cars. Diagnostyka 2021. Vol. 22(1). P. 93-99. DOI: https://doi.org/10.29354/diag/133476.
  • 5. Ramachander, J. & Gugulothu, S.K. & Ravikiran Sastry, G. & Siva Surya, M. Statistical and experimental investigation of the influence of fuel injection strategies on CRDI engine assisted CNG dual fuel diesel engine. International Journal of Hydrogen Energy. 2021. Vol. 46(42). P. 22149-22164. DOI: https://doi.org/10.1016/j.ijhydene.2021.04.010.
  • 6. Witaszek, K. Modeling of fuel consumption using artificial neural networks. Diagnostyka. 2020. Vol. 21(4). P. 103-113. DOI: https://doi.org/10.29354/diag/130610.
  • 7. Yuvenda, D. & Sudarmanta, B. & Wahjudi, A. & Muraza, O. Improved combustion performances and lowered emissions of CNG-diesel dual fuel engine under low load by optimizing CNG injection parameters. Fuel. 2020. Vol. 269(117202). DOI: https://doi.org/10.1016/j.fuel.2020.117202.
  • 8. Meng, X. & Zhou, Y. & Yang, T. & Long, W. & Bi, M. & Tian, J. & Lee, F. An experimental investigation of a dual-fuel engine by using bio-fuel as the additive. Renewable Energy. 2020. Vol. 147(1). P. 2238-2249. DOI: https://doi.org/10.1016/j.renene.2019.10.023.
  • 9. Ryu, K. Effects of pilot injection pressure on the combustion and emissions characteristics in a diesel engine using biodiesel - CNG dual fuel. Energy Conversion and Management. Energy Conversion and Management. 2013. Vol. 76. P. 506-516. DOI: http://dx.doi.org/10.1016/j.enconman.2013.07.085.
  • 10. Lee, C. & Pang, Y. & Wu, H. & Nithyanandan, K. & Liu, F. An optical investigation of substitution rates on natural gas/diesel dual-fuel combustion in a diesel engine. Applied Energy. 2020. Vol. 261(114455). DOI: https://doi.org/10.1016/j.apenergy.2019.114455.
  • 11. Hall, C. & Kassa, M. Advances in combustion control for natural gas-diesel dual fuel compression ignition engines in automotive applications: A review. Renewable and Sustainable Energy Reviews. 2021. Vol. 148(111291). DOI: https://doi.org/10.1016/j.rser.2021.111291.
  • 12. Lee, S. & Kim, C. & Lee, S. & Lee, K. & Kim, J. Diesel injector nozzle optimization for high CNG substitution in a dual-fuel heavy-duty diesel engine. Fuel. 2020. Vol. 262(116607). DOI: https://doi.org/10.1016/j.fuel.2019.116607.
  • 13. Yuvenda, D. & Sudarmanta, B. & Wahjudi, A. & Muraza, O. Improved combustion performances and lowered emissions of CNG-diesel dual fuel engine under low load by optimizing CNG injection parameters. Fuel. 2020. Vol. 269(117202). DOI: https://doi.org/10.1016/j.fuel.2020.117202.
  • 14. Yang, B. & Wang, L. & Ning, L. & Zeng, K. Effects of pilot injection timing on the combustion noise and particle emissions of a diesel/natural gas dual-fuel engine at low load. Applied Thermal Engineering. 2016. Vol. 102. P. 822-828. DOI: http://dx.doi.org/10.1016/j.applthermaleng.2016.03.126.
  • 15. Xu, M. & Cheng, W. & Li, Z. & Zhang, H. & An, T. & Meng, Z. Pre-injection strategy for pilot diesel compression ignition natural gas engine. Applied Energy. 2016. Vol. 179. P. 1185-1193. DOI: http://dx.doi.org/10.1016/j.apenergy.2016.07.024.
  • 16. Wang, Z. & Zhao, Z. & Wang, D. & Tan, M. & Han, Y. & Liu, Z. & Dou, H. Impact of pilot diesel ignition mode on combustion and emissions characteristics of a diesel/natural gas dual fuel heavy-duty engine. Fuel. 2016. Vol. 167. P. 248-256. DOI: http://dx.doi.org/10.1016/j.fuel.2015.11.077.
  • 17. Tutak, W. & Jamrozik, A. & Grab-Rogaliński, K. Effect of natural gas enrichment with hydrogen on combustion process and emission characteristic of a dual fuel diesel engine. International Journal of Hydrogen Energy. 2020. Vol. 45(15). P. 9088-9909. DOI: https://doi.org/10.1016/j.ijhydene.2020.01.080.
  • 18. Yousefi, A. & Guo, H. & Birouk, M. Effect of diesel injection timing on the combustion of natural gas/diesel dual-fuel engine at low-high load and low-high speed conditions. Fuel. 2019. Vol. 235. P. 838-846. DOI: https://doi.org/10.1016/j.fuel.2018.08.064.
  • 19. Yang, B. & Xi, C. & Wei, X. & Zeng, K. & Lai, M.C. Parametric investigation of natural gas port injection and diesel pilot injection on the combustion and emissions of a turbocharged common rail dual-fuel engine at low load. Applied Energy. 2015. Vol. 143. P. 130-137. DOI: http://dx.doi.org/10.1016/j.apenergy.2015.01.037.
  • 20. Yang, B. & Wei, X. & Xi, C. & Liu, Y. & Zeng, K. & Lai, M.-C. Experimental study of the effects of natural gas injection timing on the combustion performance and emissions of a turbocharged common rail dual-fuel engine. Energy Conversion and Management. 2014. Vol. 87. P. 297-304. DOI: http://dx.doi.org/10.1016/j.enconman.2014.07.030.
  • 21. Wierzbicki, S. Laboratory control and measurement system of a dual-fuel compression ignition combustion engine operating in a cogeneration system. Solid State Phenomena. Mechatronic Systems, Mechanics and Material. 2014. Vol. 210. P. 200-205. DOI: http://dx.doi.org/10.4028/www.scientific.net/SSP.210.200.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bbf82fcd-4d0c-458e-963c-c6ef61ca360c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.