PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Digital nuclear shell model

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The subject of this thesis is a digital approach to the investigation of the digital basis of digital nuclear shell model. The shell model is partly analogous to the atomic shell model which describes the arrangement of electrons in an atom, in that a filled shell results in greater stability. When adding nucleons to a nucleus, there are certain points where the binding energy of the next nucleon is significantly less than the last one. Magic numbers of nucleons: 2, 8, 20, 28, 50, 82, 126 which are more tightly bound than the next higher number, is the origin of the shell model. “In a three-dimensional harmonic oscillator the total degeneracy at level n is [wzór]. Due to the spin, the degeneracy is doubled and is (n+1)(n+2). Thus the magic numbers would be [wzór] for all integer k. This gives the following magic numbers: 2,8,20,40,70,112..., which agree with experiment only in the first three entries. These numbers are twice the tetrahedral numbers (1,4,10,20,35,56...) from the Pascal Triangle”. http://en.wikipedia.org/wiki/Nuclear_shell_model. The digital mechanism of shell model have been analyzed by the application of cybernetic methods, information theory and system theory, respectively. This paper is to report that we discovered new methods for development of the new technologies in nuclear physics and chemistry. It is about the most advanced digital technology which is based on program, cybernetics and informational systems and laws. The results in practical application of the new technology could be useful in physics, chemistry, bioinformatics, and other natural sciences.
Rocznik
Strony
160--173
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
autor
  • Institute of Economics, University of Sarajevo, Trg Oslobođenja 1, Sarajevo, Bosnia and Herzegovina
Bibliografia
  • [1] L. Kurić, International Letters of Chemistry, Physics and Astronomy 10 (2014) 62-73.
  • [2] L. Kurić, J. Comput Sci Biol 2 (2009) 101-116.
  • [3] L. Kurić, International Letters of Chemistry, Physics and Astronomy 13(1) (2014) 42-53.
  • [4] L. Kurić, Journal de la Societe de statistique de Paris 127(2) (1986).
  • [5] L. Kurić, GJMR 10(1) (2010) 15.
  • [6] L. Kurić, Advances and Applications in Bioinformatics and Chemistry (2010) 45-58.
  • [7] L. Kurić, GJMR 1(1) (2010) 15.
  • [8] L. Kurić, International Journal of Computer Technology and Application 2(2) (2011) 216-241.
  • [9] L. Kurić, International Journal of Computer Technology and Application 2(2) (2011) 258-273.
  • [10] L. Kurić, Journal of Chemical Engineering and Material Science 2(5) (2011).
  • [11] L. Kurić, International Letters of Chemistry, Physics and Astronomy 11(3) (2014) 202-213.
  • [12] L. Kurić, International Letters of Chemistry, Physics and Astronomy 12 (2014) 31-50.
  • [13] L. Kurić, International Letters of Chemistry, Physics and Astronomy 13(1) (2014) 11-20.
  • [14] Lutvo Kurić, International Letters of Chemistry, Physics and Astronomy 13(1) (2014) 42-53.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bbf6f484-75d8-4d80-bcdd-69ed21bc3b9e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.