PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of industrial pollution by radial basis function networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Atmospheric pollution has been receiving a significant interest for several decades since industries cause more and more pollution. Thanks to the development of many prediction techniques, scientists and industries are focusing more on pollution prediction. The aim of this work is to predict the two pollutant concentrations (NOx and CO) in industrial sites by a modified radial basis function (RBF) based neural network. The modification considered the spread parameter h of the activation function in the RBF network. In order to get the best network, the variations of this parameter for three cases were considered. In the first case, only pollutants concentrations variables were used, while in the second one, only the meteorological variables were utilized. In the third case, pollutants' concentrations were connected with meteorological variables. Based on calculation errors, the best model that ensures the best monitoring of pollutants concentration could be identified.
Rocznik
Strony
153--164
Opis fizyczny
Bibliogr. 19 poz., tab., rys.
Twórcy
autor
  • University 20 août, 1955 Skikda, Algeria
autor
  • University 20 août, 1955 Skikda, Algeria
Bibliografia
  • [1] CHEN S., COWAN C.F.N., GRANT P.M., Orthogonal least squares learning algorithm for radial basis function networks, IEEE Trans. Neural Networks, 1991, 2 (2), 302.
  • [2] BIN Z., MIN W., NENG W., GAINES W.J., XIN F., YUQI T., Spatial modeling of PM2.5 concentrations with a multifactorial radial basis function neural network, Environ. Sci. Pollut., 2015, 3 (22), 10395.
  • [3] LIU Z., FEI S., Study of CNG/diesel dual fuel engine’s emissions by means of RBF neural network, J. Zhejiang University Science, 2004, 5 (8), 960.
  • [4] KYRIAKI K., LAZAROS I., Employing a radial basis function artificial neural network to classify western and transition european economies based on the emissions of air pollutants and on their income, International Federation for Information Processing EANN/AIAI, 2011, 2 (364), 141.
  • [5] BO Z., JIANFENG S., Gas content prediction based on GA-RBF neural network, Chinese Control and Decision Conference, Xuzhou, China, 2010, 978 (1), 3104,
  • [6] SHOURONG L., RONGXI Z., XIN M., The forecast of CO2 emissions in China based on RBF neural networks, 2nd International Conference on Industrial and Information Systems, Dalian, China, 2010.
  • [7] CHUANBAO L., FUWU Y., Radical basis function neural network-based NOx soft sensor technique, International Conference on Electrical and Control Engineering, Yichang, China, 2011.
  • [8] Zheng H., Shang X., Study on prediction of atmospheric PM2.5 based on RBF neural network, Fourth International Conference on Digital Manufacturing and Automation, Qingdao, China, 2013.
  • [9] SHAHAB A., Data-Driven Modeling. Using MATLAB® in Water Resources and Environmental Engineering, Springer, Dordrecht 2014.
  • [10] YIRAN S., DING L.Y., YANTAO T., YAOWU S., Air:fuel ratio prediction and NMPC for SIengines with modified Volterra model and RBF network, Eng. Appl. Artif. Int., 2015, 45, 313.
  • [11] PIETRO Z., HAIBO C., MARGARET C.B., Predicting real-time roadside CO and NO2 concentrations using neural networks, IEEE Trans. Int. Transp. Syst., 2008, 9 (3), 514.
  • [12] SURAJDEEN A.I., MOUSTAFA E., MOUHAMED A.H., AHMED A.A., RBF neural network inferential sensor for process emission monitoring, Control Eng. Pract., 2013, 21, 962.
  • [13] WILLMOTT C., Some comments on the evaluation of the model performance, Bull. Am. Meteor. Soc., 1982, 63 (11), 1309.
  • [14] WILLMOTT C., ACKLESON S., DAVIS R., FEDDEMA J., KLINK K., LEGATES D., O’DONNELL J., ROWE C., Statistics for the evaluation and comparison of models, J. Geophys. Res., 1985, 90 (5), 8995.
  • [15] ROESON S.M., STEYN D.G., Evaluation and comparison of statistical forecast models for daily maximum ozone concentrations, Atm. Environ., 1990, 24 (2), 303.
  • [16] COMAN A., IONESCU A., CANDAUY., Hourly ozone prediction for a 24-h horizon using neural networks, Environ. Model. Soft., 2008, 23 (2008), 1407.
  • [17] JUNNINENA H., NISKAA H., TUPPURAINENC K., RUUSKANENA J., KOLEHMAINENA M., Methods for imputation of missing values in air quality data sets, Atm. Environ., 2004, 38, 2895.
  • [18] KOLEHMAINEN M., MARTIKAINEN H., RUUSKANEN J., Neural networks and periodic components used in air quality forecasting, Atm. Environ., 2001, 35, 815.
  • [19] NISSES M., E-documentations techniques de complexe GL1K-Skikda, Algeria, 2011.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bbf12581-b2e9-43d0-85ab-f4df25bed810
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.