Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Przegląd nieizolowanych konwerterów prądu stałego na prąd stały
Języki publikacji
Abstrakty
DC-to-DC converters are Today widely used in power conversion systems that demand a continuous source and a continuous output, and the most prominent of these systems is the photovoltaic panels system, where dc-dc converters have become an integral part of this application, thanks to the advantages offered by dc-dc converters in this application as stability The system and performance improvement, as well as raising or lowering the output voltage compared to the input voltage, and increase the efficiency of the system and achieve the maximum power point that can be produced from photovoltaic panels by application of MPPT in addition to the ability to provide a fixed output voltage in the case of a variable input voltage due to natural factors such as a change in radiation and temperature. In this study, we describe Buck, Boost, Buck-Boost, CUK, and Zeta Converters, which are the most significant non-isolated DC-DC Converters that are frequently utilized in solar energy systems. This paper also provides an overview of recent studies for each converter; we also present a comparison between these converters, highlighting the most notable benefits and drawbacks of each converter.
Przetwornice DC-DC są obecnie szeroko stosowane w systemach konwersji energii, które wymagają ciągłego źródła i ciągłej mocy wyjściowej, a najbardziej znanym z tych systemów jest system paneli fotowoltaicznych, w którym przetwornice DC-DC stały się integralną częścią tej aplikacji , dzięki zaletom oferowanym przez przetwornice dc-dc w tej aplikacji, jak stabilność systemu i poprawa wydajności, a także podniesienie lub obniżenie napięcia wyjściowego w stosunku do napięcia wejściowego oraz zwiększenie wydajności systemu i osiągnięcie maksymalnego punktu mocy które można wytworzyć z paneli fotowoltaicznych poprzez zastosowanie MPPT oprócz możliwości zapewnienia stałego napięcia wyjściowego w przypadku zmiennego napięcia wejściowego spowodowanego czynnikami naturalnymi, takimi jak zmiana promieniowania i temperatury. W tym badaniu opisujemy przetwornice Buck, Boost, Buck-Boost, CUK i Zeta, które są najważniejszymi nieizolowanymi przetwornicami DC-DC, które są często wykorzystywane w systemach energii słonecznej. Ten artykuł zawiera również przegląd ostatnich badań dla każdego konwertera; przedstawiamy również porównanie tych konwerterów, podkreślając najważniejsze zalety i wady każdego konwertera.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1--14
Opis fizyczny
Bibliogr. 71 poz., rys., tab.
Twórcy
autor
- University of Souk Ahras
autor
- University of Souk Ahras
autor
- University of Souk Ahras
autor
- University of Souk Ahras
Bibliografia
- [1] B. W. Williams, “DC-to-DC Converters With Continuous Input and Output Power,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2307–2316, May 2013, doi: 10.1109/TPEL.2012.2213272.
- [2] D. Verma, S. Nema, R. Agrawal, Y. Sawle, and A. Kumar, “A Different Approach for Maximum Power Point Tracking (MPPT) Using Impedance Matching through Non-Isolated DC-DC Converters in Solar Photovoltaic Systems,” Electronics, vol. 11, no. 7, Art. no. 7, Jan. 2022, doi: 10.3390/electronics11071053.
- [3] A. Agrawal, K. C. Jana, and A. Shrivastava, “A review of different DC/DC converters for power quality improvement in LED lighting load,” in 2015 International Conference on Energy Economics and Environment (ICEEE), Greater Noida, India: IEEE, Mar. 2015, pp. 1–6. doi: 10.1109/EnergyEconomics.2015.7235089.
- [4] N. B. Dawood, “Review of Different DC to DC Converters Based for Renewable Energy Applications,” vol. 03, no. 03.
- [5] M. A. Yasko, “Analysis, Design and Simulation of Buck Converter for Photovoltaic System,” in 2018 22nd International Conference Electronics, Jun. 2018, pp. 1–6. doi: 10.1109/ELECTRONICS.2018.8443646.
- [6] A. Altamimi and Z. A. Khan, “A DC-DC buck converter with maximum power point tracking implementation for photovoltaic module application,” in 2017 IEEE Conference on Energy Conversion (CENCON), Oct. 2017, pp. 305–310. doi: 10.1109/CENCON.2017.8262503.
- [7] Dileep. G and S. N. Singh, “Selection of non-isolated DC-DC converters for solar photovoltaic system,” Renew. Sustain. Energy Rev., vol. 76, pp. 1230–1247, Sep. 2017, doi: 10.1016/j.rser.2017.03.130.
- [8] N. Hanisah Baharudin, T. Muhammad Nizar Tunku Mansur, F. Abdul Hamid, R. Ali, and M. Irwanto Misrun, “Topologies of DC-DC Converter in Solar PV Applications,” Indones. J. Electr. Eng. Comput. Sci., vol. 8, no. 2, p. 368, Nov. 2017, doi: 10.11591/ijeecs.v8.i2.pp368-374.
- [9] A. Urtasun and D. D.-C. Lu, “Control of a Single-Switch Two-Input Buck Converter for MPPT of Two PV Strings,” IEEE Trans. Ind. Electron., vol. 62, no. 11, pp. 7051–7060, Nov. 2015, doi: 10.1109/TIE.2015.2432097.
- [10] C.-T. Tsai and W.-M. Chen, “Buck Converter with Soft-Switching Cells for PV Panel Applications,” Energies, vol. 9, no. 3, p. 148, Mar. 2016, doi: 10.3390/en9030148.
- [11] H. Luo, H. Wen, X. Li, L. Jiang, and Y. Hu, “Synchronous buck converter based low-cost and high-efficiency sub-module DMPPT PV system under partial shading conditions,” Energy Convers. Manag., vol. 126, pp. 473–487, Oct. 2016, doi: 10.1016/j.enconman.2016.08.034.
- [12] Z. A. Ghani et al., “Development of a DC TO DC Buck converter for photovoltaic application utilizing peripheral interface controller” vol. 14, no. 7, 2019.
- [13] A. Boudouda, N. Boudjerda, A. Aibeche, and A. Bouzida, “Dual randomized pulse width modulation technique for Buck converter fed by photovoltaic source”.
- [14] T. T. Lusijarto, A. Risdiyanto, N. A. Rachman, I. Abdurahman, B. Susanto, and H. P. Santosa, “Modelling and Simulation of Closed Loop Buck Converter to Supply Constant DC Load for Single Solar PV Panel,” in 2018 International Conference on Sustainable Energy Engineering and Application (ICSEEA), Tangerang, Indonesia: IEEE, Nov. 2018, pp. 57–63. doi: 10.1109/ICSEEA.2018.8627105.
- [15] N. H. Baharudin, T. M. N. T. Mansur, F. A. Hamid, R. Ali, and M. I. Misrun, “Performance Analysis of DC-DC Buck Converter for Renewable Energy Application,” J. Phys. Conf. Ser., vol. 1019, p. 012020, Jun. 2018, doi: 10.1088/1742- 6596/1019/1/012020.
- [16] K. Pal and M. Pattnaik, “Performance of a Synchronous Buck Converter for a Standalone PV System: an Experimental Study,” in 2019 IEEE 1st International Conference on Energy, Systems and Information Processing (ICESIP), Chennai, India: IEEE, Jul. 2019, pp. 1–6. doi: 10.1109/ICESIP46348.2019.8938345.
- [17] F. Reverter and M. Gasulla, “Buck Converter for Low-Power PV Modules: A Comparative Study,” in EUROSENSORS 2018, MDPI, Nov. 2018, p. 1050. doi: 10.3390/proceedings2131050.
- [18] W. Merrouche, I. Gaci, S. Ould-Amrouche, and A. Boubezari, “PWM Buck Converter used in PV Controller,” in 2019 7th International Renewable and Sustainable Energy Conference (IRSEC), Agadir, Morocco: IEEE, Nov. 2019, pp. 1–6. doi: 10.1109/IRSEC48032.2019.9078250.
- [19] L. A. Kumar, R. Selvamathi, V. Indragandhi, D. Elangovan, and G. Arunkumar, “Photovoltaic Based Zero Voltage Transition DC-DC Buck Converter,” in 2018 International Conference on Engineering, Applied Sciences, and Technology (ICEAST), Phuket, Thailand: IEEE, Jul. 2018, pp. 1–4. doi: 10.1109/ICEAST.2018.8434491.
- [20] N. I. P. De León Puig, D. Bozalakov, L. Acho, L. Vandevelde, and J. Rodellar, “An Adaptive–Predictive control scheme with dynamic Hysteresis Modulation applied to a DC–DC buck converter,” ISA Trans., vol. 105, pp. 240–255, Oct. 2020, doi: 10.1016/j.isatra.2020.05.015.
- [21] N. Murshed, Md. S. K. Tushar, and S. Chowdhury, “Power Performance Analysis of PV Module with DC to DC Buck Converter,” Adv. J. Grad. Res., vol. 8, no. 1, pp. 27–39, Apr. 2020, doi: 10.21467/ajgr.8.1.27-39.
- [22] Saadatmand, P. Shamsi, and M. Ferdowsi, “The Voltage Regulation of a Buck Converter Using a Neural Network Predictive Controller,” in 2020 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA: IEEE, Feb. 2020, pp. 1–6. doi: 10.1109/TPEC48276.2020.9042588.
- [23] S. E. Babaa, G. E. Murr, F. Mohamed, and S. Pamuri, “Overview of Boost Converters for Photovoltaic Systems,” J. Power Energy Eng., vol. 06, no. 04, pp. 16–31, 2018, doi: 10.4236/jpee.2018.64002.
- [24] B. M. Hasaneen and A. A. Elbaset Mohammed, “Design and simulation of DC/DC boost converter,” in 2008 12th International Middle-East Power System Conference, Aswan, Egypt: IEEE, Mar. 2008, pp. 335–340. doi: 10.1109/MEPCON.2008.4562340.
- [25] R. Vinifa, A. Kavitha, and A. I. Selwynraj, “MAXIMUM POWER POINT TRACKING OF BOOST CONVERTER ON A PV SYSTEM USING FUZZY LOGIC”.
- [26] Professor, Department of Electrical and Electronics Engineering, Gnanamani College of Technology, Namakkal, India. et al., “Implementation of PV - Based Boost Converter Using PI Controller with PSO Algorithm,” Int. J. Eng. Comput. Sci., Mar. 2017, doi: 10.18535/ijecs/v6i3.14.
- [27] P. Singh and J. S. Lather, “A PWM-based sliding mode voltage control of DC-DC boost converter for DC microgrid,” in 2018 IEEE 8th Power India International Conference (PIICON), Kurukshetra, India: IEEE, Dec. 2018, pp. 1–5. doi: 10.1109/POWERI.2018.8704456.
- [28] A. Pradhan and B. Panda, “A Simplified Design and Modeling of Boost Converter for Photovoltaic Sytem,” Int. J. Electr. Comput. Eng. IJECE, vol. 8, no. 1, p. 141, Feb. 2018, doi: 10.11591/ijece.v8i1.pp141-149.
- [29] M. Á. A. Fong, J. J. R. Rivas, O. C. Castillo, R. O. Gonzalez, and J. C. T. Barrera, “Control of a Boost Converter to Improve the Performance of a Photovoltaic System in a Microgrid,” in Environment, Green Technology, and Engineering International Conference, MDPI, Oct. 2018, p. 1270. doi: 10.3390/proceedings2201270.
- [30] S. Belhimer, M. Haddadi, and A. Mellit, “A novel hybrid boost converter with extended duty cycles range for tracking the maximum power point in photovoltaic system applications,” Int. J. Hydrog. Energy, vol. 43, no. 14, pp. 6887–6898, Apr. 2018, doi: 10.1016/j.ijhydene.2018.02.136.
- [31] R. Ayop and C. W. Tan, “Design of boost converter based on maximum power point resistance for photovoltaic applications,” Sol. Energy, vol. 160, pp. 322–335, Jan. 2018, doi: 10.1016/j.solener.2017.12.016.
- [32] F. Mumtaz, N. Zaihar Yahaya, S. Tanzim Meraj, B. Singh, R. Kannan, and O. Ibrahim, “Review on non-isolated DC-DC converters and their control techniques for renewable energy applications,” Ain Shams Eng. J., vol. 12, no. 4, pp. 3747– 3763, Dec. 2021, doi: 10.1016/j.asej.2021.03.022.
- [33] L. Zaghba, A. Borni, A. Bouchakour, and N. Terki, “Buck-boost converter system modelling and incremental inductance”.
- [34] S. A. Gorji, A. Mostaan, H. Tran My, and M. Ektesabi, “Non-isolated buck–boost dc–dc converter with quadratic voltage gain ratio,” IET Power Electron., vol. 12, no. 6, pp. 1425–1433, May 2019, doi: 10.1049/iet-pel.2018.5703.
- [35] M. Q. Duong, V. T. Nguyen, G. N. Sava, M. Scripcariu, and M. Mussetta, “Design and simulation of PI-type control for the Buck Boost converter,” in 2017 International Conference on ENERGY and ENVIRONMENT (CIEM), Bucharest: IEEE, Oct. 2017, pp. 79–82. doi: 10.1109/CIEM.2017.8120769.
- [36] B. R. Kiran and G. A. Ezhilarasi, “Design and analysis of soft-switched Buck-Boost Converter for PV applications,” in 2015 Annual IEEE India Conference (INDICON), Dec. 2015, pp. 1–5. doi: 10.1109/INDICON.2015.7443509.
- [37] S. H. Hosseini, R. Ghazi, and S. K. Movahhed, “A Novel High Gain Single-Switch DC-DC Buck-Boost Converter with Continuous Input and Output Power,” in 2019 24th Electrical Power Distribution Conference (EPDC), Khoramabad, Iran: IEEE, Jun. 2019, pp. 10–15. doi: 10.1109/EPDC.2019.8903599.
- [38] R. Blange, C. Mahanta, and A. K. Gogoi, “MPPT of solar photovoltaic cell using perturb & observe and fuzzy logic controller algorithm for buck-boost DC-DC converter,” in 2015 International Conference on Energy, Power and Environment: Towards Sustainable Growth (ICEPE), Shillong, India: IEEE, Jun. 2015, pp. 1–5. doi: 10.1109/EPETSG.2015.7510125.
- [39] M. D. Almawlawe and M. Kovandzic, “A Modified Method for Tuning PID Controller for Buck-Boost Converter,” Int. J. Adv. Eng. Res. Sci., vol. 3, no. 12, pp. 20–26, 2016, doi: 10.22161/ijaers/3.12.4.
- [40] A. Sarikhani, B. Allahverdinejad, M. Hamzeh, and E. Afjei, “A continuous input and output current quadratic buck-boost converter with positive output voltage for photovoltaic applications,” Sol. Energy, vol. 188, pp. 19–27, Aug. 2019, doi: 10.1016/j.solener.2019.05.025.
- [41] P. P. Surya, D. Irawan, and M. Zuhri, “Review and comparison Of DC-DC converters for maximum power point tracking system in standalone photovoltaic (PV) module,” in 2017 International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation (ICAMIMIA), Surabaya: IEEE, Oct. 2017, pp. 242–247. doi: 10.1109/ICAMIMIA.2017.8387595.
- [42] M. Kaouane, A. Boukhelifa, and A. Cheriti, “Regulated output voltage double switch Buck-Boost converter for photovoltaic energy application,” Int. J. Hydrog. Energy, vol. 41, no. 45, pp. 20847–20857, Dec. 2016, doi: 10.1016/j.ijhydene.2016.06.140.
- [43] M. Marodkar, S. Adhau, M. Sabley, and P. Adhau, “Design and simulation of DC-DC converters for Photovoltaic system based on MATLAB,” in 2015 International Conference on Industrial Instrumentation and Control (ICIC), Pune, India: IEEE, May 2015, pp. 1478–1483. doi: 10.1109/IIC.2015.7150983.
- [44] B. Poorali, E. Adib, and H. Farzanehfard, “Soft-switching DC– DC Cuk converter operating in discontinuous-capacitor-voltage mode,” IET Power Electron., vol. 10, no. 13, pp. 1679–1686, Oct. 2017, doi: 10.1049/iet-pel.2016.0513.
- [45] Y. Almalaq and M. Matin, “Two-Switch High Gain Non-Isolated Cuk Converter,” Eng. Technol. Appl. Sci. Res., vol. 10, no. 5, pp. 6362–6367, Oct. 2020, doi: 10.48084/etasr.3826.
- [46] K. Balachander, A. Amudha, M. Siva Ramkumar, G. Emayavaramban, S. Divyapriy, and P. Nagaveni, “Design and analysis of modified CUK converter for electric hybrid vehicle,” Mater. Today Proc., vol. 45, pp. 1691–1695, 2021, doi: 10.1016/j.matpr.2020.08.566.
- [47] J. P. De Souza, P. De Oliveira, R. Gules, E. F. R. Romaneli, and A. A. Badin, “A high static gain CUK DC-DC converter,” in 2015 IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC), Fortaleza, Brazil: IEEE, Nov. 2015, pp. 1–6. doi: 10.1109/COBEP.2015.7420064.
- [48] A. Lavana, K. Praveen, J. D. Navamani, K. Vijayakumar, and P. Student, “Performance comparison of Cuk and Modified Cuk converter for PV Applications,” vol. 3, no. 11.
- [49] N. Swain, “Comparative Performance Analysis of dc-de Converter using PI Controller and Fuzzy Logic Controller”.
- [50] A. Elkhateb, N. A. Rahim, and J. Selvaraj, “Optimized PID controller for both single phase inverter and MPPT SEPIC DC/DC converter of PV module,” in 2011 IEEE International Electric Machines & Drives Conference (IEMDC), Niagara Falls, ON, Canada: IEEE, May 2011, pp. 1036–1041. doi: 10.1109/IEMDC.2011.5994743.
- [51] O. Kircioglu, M. Unlu, and S. Camur, “Modeling and analysis of DC-DC SEPIC converter with coupled inductors,” in 2016 International Symposium on Industrial Electronics (INDEL), Banja Luka, Bosnia and Herzegovina: IEEE, Nov. 2016, pp. 1– 5. doi: 10.1109/INDEL.2016.7797807.
- [52] I. Alhamrouni, M. K. Rahmat, F. A. Ismail, M. Salem, A. Jusoh, and T. Sutikno, “Design and development of SEPIC DC-DC boost converter for photovoltaic application,” Int. J. Power Electron. Drive Syst. IJPEDS, vol. 10, no. 1, p. 406, Mar. 2019, doi: 10.11591/ijpeds.v10.i1.pp406-413.
- [53] C. Muranda, E. Ozsoy, S. Padmanaban, M. S. Bhaskar, V. Fedák, and V. K. Ramachandaramurthy, “Modified SEPIC DC-to-DC boost converter with high output-gain configuration for renewable applications,” in 2017 IEEE Conference on Energy Conversion (CENCON), Oct. 2017, pp. 317–322. doi: 10.1109/CENCON.2017.8262505.
- [54] D. M. Sangalad, Hemalatha J N, Hariprasad S.A., and Anitha G.S., “Design and analysis of dual input SEPIC converter for renewable energy sources,” in 2015 International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT), Mandya, India: IEEE, Dec. 2015, pp. 358–363. doi: 10.1109/ERECT.2015.7499041.
- [55] J. Marjani, A. Imani, A. Hekmati, and E. Afjei, “A new dual output DC-DC converter based on SEPIC and Cuk converters,” in 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Capri, Italy: IEEE, Jun. 2016, pp. 946–950. doi: 10.1109/SPEEDAM.2016.7525949.
- [56] R. Kushwaha and B. Singh, “An Improved SEPIC PFC Converter for Electric Vehicle Battery Charger,” in 2019 IEEE Industry Applications Society Annual Meeting, Baltimore, MD, USA: IEEE, Sep. 2019, pp. 1–8. doi: 10.1109/IAS.2019.8912344.
- [57] S. I. Khather and M. A. Ibrahim, “Modeling and simulation of SEPIC controlled converter using PID controller,” Int. J. Power Electron. Drive Syst. IJPEDS, vol. 11, no. 2, p. 833, Jun. 2020, doi: 10.11591/ijpeds.v11.i2.pp833-843.
- [58] M. Majstorovic, D. Mrsevic, B. Duric, M. Milesevic, Z. Stevic, and Z. V. Despotovic, “Implementation of MPPT Methods with SEPIC Converter,” in 2020 19th International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Bosnia and Herzegovina: IEEE, Mar. 2020, pp. 1–6. doi: 10.1109/INFOTEH48170.2020.9066296.
- [59] N. Y. Goshwe, G. A. Igwue, and T. D. Kureve, “Simulation of a SEPIC DC-DC converter using perturb and observe and fuzzy logic control,” Int. J. Sci. Technol. Res.
- [60] M. Zhang, N. Zhong, and M. Ma, “Sliding mode control of SEPIC converter based photovoltaic system,” Syst. Sci. Control Eng., vol. 9, no. sup2, pp. 112–118, May 2021, doi: 10.1080/21642583.2021.1872043.
- [61] M. Verma and S. S. Kumar, “Hardware Design of SEPIC Converter and its Analysis,” in 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT), Coimbatore: IEEE, Mar. 2018, pp. 1–4. doi: 10.1109/ICCTCT.2018.8551052.
- [62] S. Shringi, S. K. Sharma, U. Gupta, and K. Singh, “Comparative Study of Cuk, Zeta, Buck-Boost, Boost, Buck Converter in a Standalone PV System,” Int. J. Eng. Res., vol. 8, no. 09.
- [63] L. Vignesh and G. S. Kumar, “PV Fed Zeta Converter,” Int. J. Eng. Res., vol. 7, no. 02, 2019.
- [64] K. V. G. Raghavendra et al., “A Comprehensive Review of DC–DC Converter Topologies and Modulation Strategies with Recent Advances in Solar Photovoltaic Systems,” Electronics, vol. 9, no. 1, p. 31, Dec. 2019, doi: 10.3390/electronics9010031.
- [65] E. Vuthchhay and C. Bunlaksananusorn, “Modeling and control of a Zeta converter,” in The 2010 International Power Electronics Conference - ECCE ASIA -, Sapporo, Japan: IEEE, Jun. 2010, pp. 612–619. doi: 10.1109/IPEC.2010.5543332.
- [66] U. Jayashree, R. H. P. Nightingale, and S. Divya, “Implementation of basic MPPT techniques for zeta converter,” 2017.
- [67] Department of EEEE, St.Joseph College of Engineering, Chennai, India. et al., “Multi Input and Multi Output Zeta Converter for Hybrid Renewable Energy Storage systems,” Int. J. Innov. Technol. Explor. Eng., vol. 9, no. 2, pp. 4114–4119, Dec. 2019, doi: 10.35940/ijitee.B7417.129219.
- [68] N. Vosoughi, M. Abbasi, E. Abbasi, and M. Sabahi, “A Zeta-based switched-capacitor DC-DC converter topology,” Int. J. Circuit Theory Appl., p. cta.2647, May 2019, doi: 10.1002/cta.2647.
- [69] A. M. Khatab, M. I. Marei, and H. M. Elhelw, “An Electric Vehicle Battery Charger Based on Zeta Converter Fed from a PV Array,” in 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Palermo: IEEE, Jun. 2018, pp. 1–5. doi: 10.1109/EEEIC.2018.8494541.
- [70] G. P. Modak and V. P. Dhote, “Study and analysis of zeta converter fed by solar photovoltaic system using PID controller,” in 2017 International Conference on Innovative Research In Electrical Sciences (IICIRES), Nagapattinam, Tamilnadu, India: IEEE, Jun. 2017, pp. 1–7. doi: 10.1109/IICIRES.2017.8078313.
- [71] J. Siva Alagesan, J. Gnanavadivel, N. Senthil Kumar, and K. S. Krishna Veni, “Design and Simulation of Fuzzybased DC-DC Interleaved Zeta Converter for Photovoltaic Applications,” in 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli: IEEE, May 2018, pp. 704– 709. doi: 10.1109/ICOEI.2018.8553836.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bbed30c1-89fa-485a-bdb7-dc86e2b0c2e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.