PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Low-Frequency Mechanical Spectroscopy of Lanthanum Cobaltite Based Mixed Conducting Oxides

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The low-frequency mechanical spectra of lanthanum cobaltite based mixed conducting oxides have been measured using a computer-controlled inverted torsion pendulum. The results indicate that the internal friction spectra and shear modulus depend on the Sr doping contents (x). For undoped samples, no internal friction peak is observed. However, for La0.8Sr0.2CoO3-δ, three internal friction peaks (P2, P3 and P4) are observed. In addition to these peaks, two more peaks (P0 and P1) are observed in La0.6Sr0.4CoO3‒δ. The P0 and P1 peaks show characteristics of a phase transition, while the P2, P3 and P4 peaks are of relaxation-type. Our analysis suggests that the P0 peak is due to a phase separation and the P1 peak is related to the ferromagnetic–paramagnetic phase transition. The P2, P3 and P4 peaks are associated with the motion of domain walls. The formation of this kind of domain structure is a consequence of a transformation from the paraelastic cubic phase to the ferroelastic rhombohedral phase. With partial substitution of Fe for Co, only one peak is observed, which is discussed as a result of different microstructure.
Twórcy
autor
  • Anhui Key Laboratory of Advanced Building Materials, School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China
autor
  • Anhui Key Laboratory of Advanced Building Materials, School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China
autor
  • Laboratory of Advanced Functional Materials and Devices, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230022, China
autor
  • Laboratory of Advanced Functional Materials and Devices, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230022, China
Bibliografia
  • [1] A. J. Burggraaf, L. Cot, Dense ceramic membranes for oxygen separation, Fundamentals of Inorganic Membrane Science and Technology, First ed., Elsevier, Amsterdam, 1996.
  • [2] Y. Teraka, H. M. Zhang, S. Furukawa, N. Yamazoe, Oxygen permeation through perovskite-type oxides, Chemistry Lett. 14, 1743-1746 (1985).
  • [3] R. Mahendiran, A. K. Raychaudhuri, A. Chainami, D. D. Sarma, The large magnetoresistance of La1‒xSrxCoO3 at low temperatures, J. Phys.: Condens. Matter. 7, L561-L565 (1995).
  • [4] M. A. Senaris-Rodriguez, J. B. Goodenough, Magnetic and transport properties of the system La1‒xSrxCoO3‒δ (0 < x ≤ 0.50), J. Solid State Chem. 118, 323-336 (1995).
  • [5] A. Alonso, M. J. Martinez-Lopez, C. de la Calle, V. Pomjakushin, Preparation and structural study from neutron diffraction data of RCoO3 (R = Pr, Tb, Dy, Ho, Er, Tm, Yb, Lu) perovskites, J. Mater. Chem. 16, 1555-1560 (2006).
  • [6] C. H. Chen, H. J. M. Bouwmeester, R. H. E. van Doorn, H. Kruidhof, A. J. Burggraaf, Oxygen permeation of La0.3Sr0.7CoO3−δ, Solid State Ionics 98, 3-13 (1997).
  • [7] N. Orlovskaya, K. Kleveland, T. Grande, M.-A. Einarsrud, Mechanical properties of LaCoO3 based ceramics, J. Eur. Ceram. Soc. 20, 51-56 (2000).
  • [8] K. Kleveland, N. Orlovskaya, T. Grande, A. M. M. Moe, M.-A. Einarsrud, K. Breder, G. Gogotsi, Ferroelastic behavior of LaCoO3-based ceramics, J. Am. Ceram. Soc. 84, 2029-2033 (2001).
  • [9] N. Orlovskaya, Y. Gogotsi, M. Reece, B. Cheng, I. Gibson, Ferroelasticity and hysteresis in LaCoO3 based perovskites, Acta Mater. 50, 715-723 (2002).
  • [10] N. Orlovskaya, N. Browning, A. Nicholls, Ferroelasticity in mixed conducting LaCoO3 based perovskites: A ferroelastic phase transition, Acta Mater. 51, 5063-5071 (2003).
  • [11] N. Orlovskaya, D. Steinmetz, S. Yarmolenko, D. Pai, J. Sankar, J. Goodenough, Detection of temperature- and stress-induced modifications of LaCoO3 by micro-Raman spectroscopy, Phys. Rev. B 72 014122-1-7 (2005).
  • [12] P. E. Vullum, J. Mastin, J. Wright, M.-A. Einarsrud, R. Holmestad, T. R. Grande, In-situ synchrotron X-ray diffraction of ferroelastic La0.8Ca0.2CoO3 ceramics during uniaxial compression, Acta Mater. 54, 2615-2624 (2006).
  • [13] N. Orlovskaya, M. Lugovy, S. Pathak, D. Steinmetz, J. Lloyd, L. Fegely, M. Radovic, E.A. Payzant, E. Lara-Curzio, L.F. Allard, J. Kuebler, Thermal and mechanical properties of LaCoO3 and La0.8Ca0.2CoO3 perovskites, J. Power Sources 182, 230-239 (2008).
  • [14] M. Selten, G. A. Schneider, V. Knoblauch, R. M. McMeeking, On the evolution of the linear material properties of PZT during loading history - an experimental study, Int. J. Solids Struct. 42, 3953-3966 (2005).
  • [15] N. Orlovskaya, H. Anderson, M. Brodnikovskyy, M. Lugovy, M. J. Reece, Inelastic deformation behavior of La0.6Sr0.4FeO3 perovskite, J. App. Phys. 100, 026102 (2006).
  • [16] A. S. Nowick, B.S. Berry, Anelastic Relaxation in Crystalline Solids, Academic Press, New York, 1972.
  • [17] R. De Batist, Internal Friction of Structural Defects in Crystalline Solids, North-Holland, Amsterdam, 1972.
  • [18] L. B. Magalas, Mechanical spectroscopy – Fundamentals, Sol. St. Phen. 89, 1-22 (2003).
  • [19] S. Etienne, S. Elkoun, L. David, L. B. Magalas, Mechanical spectroscopy and other relaxation spectroscopies, Sol. St. Phen. 89, 31-66 (2003).
  • [20] R. Schaller, G. Fantozzi, G. Gremaud (Eds.), Mechanical Spectroscopy Q-1 2001, Materials Science Forum 366-368 (2001).
  • [21] L. B. Magalas, Mechanical spectroscopy, internal friction and ultrasonic attenuation. Collection of works, Mater. Sci. Eng. A 521-522, 405-415 (2009).
  • [22] W. L. Warren, K. Vanheusden. D. Dimos, G. E. Pike, B. A. Tuttle, Oxygen vacancy motion in perovskite oxides, J. Am. Cerm. Soc. 79, 536-538 (1996).
  • [23] Q. F. Fang, X. P Wang, Mechanical and dielectric relaxation studies on the mechanism of oxygen ion diffusion in La2Mo2O9, Phys. Rev. B 65, 064304 (2002).
  • [24] Y. Q. Ma, W. H. Song, R. L. Zhang, J. M. Dai, J. Yang, J. J. Du, Y. P. Sun, C. Z. Bi, Y. J. Ge, X. G. Qiu, Internal friction evidence of the intrinsic inhomogeneity in La0.67Ca0.33MnO3 at low temperatures, Phys. Rev. B 69, 134404 (2004).
  • [25] X. S. Wu, Y. B. Zuo, J. H. Li, C. S. Chen, W. Liu, Low-frequency internal friction study of phase transitions in La1/3Sr2/3FeO3−δ ceramics, J. Alloys Compd. 462, 432-435 (2008).
  • [26] W. J. Lu, Y. P. Sun, B. C. Zhao, X. B. Zhu, W. H. Song, Inhomogeneous strain and phase coexistence in Bi0.4Ca0.6MnO3, Phys. Rev. B 73, 214409 (2006).
  • [27] D. N. H. Nam, K. Jonason, P. Nordblad, N. V. Khiem, N. X. Phuc, Coexistence of ferromagnetic and glassy behavior in the La0.5Sr0.5CoO3 perovskite compound, Phys. Rev. B 59, 4189 (1999).
  • [28] P. L. Kuhns, M. J. R. Hoch, W. G. Moulton, A. P. Reyes, J. Wu, C. Leighton, Magnetic phase separation in La1‒xSrxCoO3 by 59Co nuclear magnetic resonance, Phys. Rev. Lett. 91, 127202-1–127202-4 (2003).
  • [29] R. J. Harrison, S. A.T. Redfern, The influence of transformation twins on the seismic-frequency elastic and anelastic properties of perovskite: dynamical mechanical analysis of single crystal LaAlO3, Phys. Earth Planet. Int. 134, 253-272 (2002).
  • [30] R. J. Harrison, S. A. T. Redfern, J. Street, The effect of transformation twins on the seismic-frequency mechanical properties of polycrystalline Ca1−xSrxTiO3 perovskite, American Mineralogist 88, 574-582 (2003).
  • [31] B. X. Huang, J. Malzbender, R. W. Steinbrech, E. Wessel, H. J. Penkalla, L. Singheiser, Mechanical aspects of ferro-elastic behavior and phase composition of La0.58Sr0.4Co0.2Fe0.8O3−δ, J. Membr. Sci. 349, 183-188 (2010).
Uwagi
EN
The research was supported by the National Natural Science Foundation of China (Grant No. 11204406).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bbebf0fc-3ad5-4fac-8439-eaa1cba286ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.