PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the association of aerosol optical depth and total ozone fluctuations with recent earthquakes in Greece

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A number of recent studies suggest that atmospheric changes that precede an earthquake might offer the hope of providing early warning. This study attempts to examine seismo-atmospheric anomalies around the time and the location of some of the major earthquakes in Greece in the period 2001–2015. Daily values of aerosol optical depth (AOD) and total ozone column (TOZ) obtained from satellite observations are used, in the time window between 25 days before and 14 days after each of these events, in a 1° × 1° area centred on the epicentre of each earthquake. For some of these earthquake events, abnormal increases in time series of AOD and TOZ data were detected before and after the occurrence of the earthquake. Nevertheless, in other cases, no clear anomalies were observed around the earthquake date. In addition, examining the statistics of AOD and TOZ daily values, there were many cases of prominent abnormal variations, without, however, being associated with an earthquake event. Therefore, no clear association was found between AOD and TOZ fluctuations and recent earthquakes in Greece.
Czasopismo
Rocznik
Strony
659--665
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
  • Climate Research Group, Division of Environmental Physics and Meteorology, Faculty of Physics, University of Athens, Athens, Greece
  • Climate Research Group, Division of Environmental Physics and Meteorology, Faculty of Physics, University of Athens, Athens, Greece
  • Division of Electronic Engineering and Physics, University of Dundee, Dundee, UK
Bibliografia
  • 1. Akhoondzadeh M (2015) Ant colony optimization detects anomalous aerosol variations associated with the Chile earthquake of 27 February 2010. Adv Space Res 55:1754–1763
  • 2. Baragiola RA, Dukes CA, Hedges D (2011) Ozone generation by rock fracture: earthquake early warning? Appl Phys Lett 99:204101
  • 3. Chattopadhyay G, Chakraborthy P, Chattopadhyay S (2012) Mann–Kendall trend analysis of tropospheric ozone and its modeling using ARIMA. Theor Appl Climatol 110:321–328. doi:10.1007/s00704-012-0617-y
  • 4. Cracknell AP, Varotsos CA (1994) Ozone depletion over Scotland as derived from Nimbus-7 TOMS measurements. Int J Remote Sens 15(13):2659–2668
  • 5. Cracknell AP, Varotsos CA (1995) The present status of the total ozone depletion over Greece and Scotland: a comparison between Mediterranean and more northerly latitudes. Int J Remote Sens 16(10):1751–1763
  • 6. Cracknell AP, Varotsos CA (2007) Fifty years after the first artificial satellite: from Sputnik 1 to ENVISAT. Int J Remote Sens 28(10):2071–2072
  • 7. Cracknell AP, Varotsos CA (2011) New aspects of global climate-dynamics research and remote sensing. Int J Remote Sens 32(3):579–600
  • 8. Dologlou E (2016) Patterns of criticality in the recent seismic activity in the vicinity of Athens, Greece. Int J Earth Sci 105(3):1051–1054
  • 9. Efstathiou M (2012) A case study of the association of total ozone variability with major earthquakes in Greece during 2001–2010. Rem Sens Lett 3(N.3):181–190
  • 10. Efstathiou MN, Varotsos CA (2010) On the altitude dependence of the temperature scaling behaviour at the global troposphere. Int J Remote Sens 31(2):343–349
  • 11. Efstathiou MN, Varotsos CA (2012) Intrinsic properties of Sahel precipitation anomalies and rainfall. Theor Appl Climatol 109(3–4):627–633
  • 12. Efstathiou MN, Varotsos CA (2013) On the 11 year solar cycle signature in global total ozone dynamics. Meteorol Appl 20(1):72–79
  • 13. Fadnavis S, Chakraborty T, Beig G (2010) Seasonal stratospheric intrusion of ozone in the upper troposphere over India. Ann Geophys 28(11):2149–2159
  • 14. Ganguly ND (2016) Atmospheric changes observed during April 2015 Nepal earthquake. J Atmos Sol-Terr Phys 140:16–22
  • 15. Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84(B5):2348–2350
  • 16. Jacovides CP, Varotsos C, Kaltsounides NA, Petrakis M, Lalas DP (1994) Atmospheric turbidity parameters in the highly polluted site of Athens basin. Renew Energ 4(5):465–470
  • 17. Kondratyev KYA, Varotsos CA (1995a) Volcanic eruptions and global ozone dynamics. Int J Remote Sens 16(10):1887–1895
  • 18. Kondratyev KYA, Varotsos CA (1995b) Atmospheric ozone variability in the context of global change. Int J Remote Sens 16(10):1851–1881
  • 19. Kondratyev KYA, Varotsos C (2002) Review article-remote sensing and global tropospheric ozone observed dynamics. Int J Remote Sens 23(1):159–178
  • 20. Krapivin VF (1993) Mathematical model for global ecological investigations. Ecol Model 67(2–4):103–127
  • 21. Lal DM, Ghude SD, Patil SD, Kulkarni SH, Jena C, Tiwari S, Srivastava MK (2012) Tropospheric ozone and aerosol long-term trends over the Indo-Gangetic Plain (IGP), India. Atmos Res 116:82–92
  • 22. Lilliefors HW (1967) On the Kolmogorov–Sminnov test for normality with mean and variance unknown. J Am Stat Assoc 62(318):399–402
  • 23. Pawar SD, Murugavel P, Lal DM (2009) Effect of relative humidity and sea level pressure on electrical conductivity of air over Indian Ocean. J Geophys Res Atmos 114(D2):D02205
  • 24. Qin K, Wu LX, Zheng S, Bai Y, Lv X (2014) Is there an abnormal enhancement of atmospheric aerosol before the 2008 Wenchuan earthquake? Adv Space Res 54(6):1029–1034
  • 25. Sarlis NV, Skordas ES, Lazaridou MS, Varotsos PA (2008) Investigation of the seismicity after the initiation of a seismic electric signal activity until the main shock. P Jpn Acad B 84:331–343
  • 26. Uyeda S, Kamogawa M (2008) The prediction of two large earthquakes in Greece. EOS Trans AGU 89:363
  • 27. Varotsos PA (2006) What happened before the last five strong earthquakes in Greece. P Jpn Acad B 82:86–91
  • 28. Varotsos CA, Cracknell AP (1993) Ozone depletion over Greece as deduced from Nimbus-7 TOMS Measurements. Int J Remote Sens 14(11):2053–2059
  • 29. Varotsos CA, Cracknell AP (1994a) On the accuracy of total ozone measurements made with a Dobson spectrophotometer in Athens. Int J Remote Sens 15(16):3279–3283
  • 30. Varotsos CA, Cracknell AP (1994b) 3 years of total ozone measurements over Athens obtained using the remote – sensing technique of a Dobson spectrophotometer. Int J Remote Sens 15(7):1519–1524
  • 31. Varotsos CA, Cracknell AP (1998) Total ozone depletion over Greece as deduced from satellite observations. Int J Remote Sens 19(17):3317–3325
  • 32. Varotsos CA, Cracknell AP (2004) New features observed in the 11-year solar cycle. Int J Remote Sens 25(11):2141–2157
  • 33. Varotsos CA, Cracknell AP (2007) Validation of ENVISAT (SCIAMACHY) versus Dobson and TOMS atmospheric ozone measurements in Athens, Greece: Input for the upcoming IPY campaign. Int J Remote Sens 28(10):2073–2075
  • 34. Varotsos C, Kalabokas P, Chronopoulos G (1994) Association of the laminated vertical ozone structure with the lower-stratospheric circulation. J Appl Meteorol 33(4):473–476
  • 35. Varotsos P, Sarlis N, Skordas E (2001) Α note on the spatial extent of the Volos SES sensitive area. Acta Geophys Polonica 49:425–435
  • 36. Varotsos P, Sarlis N, Skordas E (2002) Long-range correlations in the electric signals that precede rupture. Phys Rev E 66:011902. doi:10.1103/PhysRevE.66.011902
  • 37. Varotsos P, Sarlis N, Skordas E (2003) Long-range correlations in the electric signals that precede rupture: further investigations. Phys Rev E 67:021109. doi:10.1103/PhysRevE.67.021109
  • 38. Varotsos P, Sarlis N, Skordas E (2011a) Natural time analysis: the new view of time. Precursory seismic electric signals, earthquakes and other complex time-series. Springer-Verlag, Berlin, Heidelberg
  • 39. Varotsos PA, Sarlis NV, Skordas ES (2011b) Scale-specific order parameter fluctuations of seismicity in natural time before mainshocks. EPL 96:59002. doi:10.1209/0295-5075/96/59002
  • 40. Varotsos PA, Sarlis NV, Skordas ES (2012) Scale-specific order parameter fluctuations of seismicity before mainshocks: natural time and detrended fluctuation analysis. EPL 99:59001. doi:10.1209/0295-5075/99/59001
  • 41. Varotsos CA, Efstathiou MN, Cracknell AP (2013) Plausible reasons for the inconsistencies between the modeled and observed temperatures in the tropical troposphere. Geophys Res Lett 40(18):4906–4910
  • 42. Watada S, Kunugi T, Hirata K, SugiokaH Nishida K, Sekiguchi S, Oikawa J, Tsuji Y, Kanamori H (2006) Atmospheric pressure change associated with the 2003 Tokachi-Oki earthquake. Geophys Res Lett 33:l24306. doi:10.1029/2006GL027967
  • 43. Xue Y, He XW, Xu H, Guang J, Guo JP, Mei LL (2014) China Collection 2.0: the aerosol optical depth dataset from the synergetic retrieval of aerosol properties algorithm. Atmos Environ 95:45–58. doi:10.1016/j.atmosenv.2014.06.019
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bbe8cd36-10c3-401d-b185-5c7489d524e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.