PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Data mining and analysis of flight control system based on temporal features and improved LSTM algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to the structural characteristics of multi-redundancy and multi-closed loops in flight control systems, their fault propagation modes are complex, and the internal physical structure is closely coupled with system components, which poses challenges for analysis and modeling. To improve the accuracy and predictive ability of flight control system fault diagnosis, this study proposes a flight control system fault diagnosis method built on an improved bidirectional long short-term memory network. By integrating convolutional neural networks and bidirectional long short-term memory networks to extract local and temporal features of the data space, the classification and regression problems of flight control system state prediction have been solved. The results indicated that the proposed fault diagnosis algorithm had the highest recognition accuracy for the four modes. Compared with single convolutional neural networks and long short-term memory networks, the accuracy has increased by 2.11% and 1.32%, and the fault diagnosis accuracy has reached 99.49%, which could accurately identify various types of faults. The improved network proposed this time significantly improves the accuracy of flight control system fault diagnosis and reduces false alarm and missed alarm rates.
Czasopismo
Rocznik
Strony
art. no. 2025408
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • School of Artificial Intelligence & Big Data, Luzhou Vocational & Technical College, Luzhou, 646000, China
autor
  • Department of Information Engineering, Heilongjiang Institute of Construction Technology, Harbin, 150025, China
autor
  • Chengyi College, Jimei University, Xiamen, 361021, China
Bibliografia
  • 1. Kosacki K, Tomczyk A. Application of analytical redundancy of measurements to increase the reliability of aircraft attitude control. Aviation. 2022; 26(3):138- 144. https://doi.org/10.3846/aviation.2022.17555.
  • 2. Kennedy IR, Hodzic M, Crossan AN, Crossan N, Acharige N, Runcie JW. Estimating maximum power from wind turbines with a simple newtonian approach. Archives of Advanced Engineering Science. 2023;1(1):38-54. https://doi.org/10.47852/bonviewAAES32021330.
  • 3. Wang HP, Duan FH, Ma J, Wang XL, He YL. Research on redundancy design of a certain aircraft hydraulic system based on goal-oriented methodology. International Journal of System Assurance Engineering and Management. 2023;14(1):343-352. https://doi.org/10.1007/s13198-022-01800-4.
  • 4. Aryavalli SNG, Kumar GH. Futuristic vigilance: empowering chipko movement with cyber-savvy IoT to safeguard forests. Archives of Advanced Engineering Science. 2023;1(8):1-16. https://doi.org/10.47852/bonviewAAES32021480.
  • 5. Fornaro E, Cardone M, Terzo M, Strano S, Tordela C. Experimentally validated neural networks for sensors redundancy purposes in spark ignition engines. SAE International Journal of Engines 2023; 17(2): 203-220. https://doi.org/10.4271/03-17-02-0012.
  • 6. Han R, Ma S, Li J, Nepal S, Lo D, Ma Z. Range specification bug detection in flight control system through fuzzing. IEEE Transactions on Software Engineering. 2024;50(3):461-473. https://doi.org/10.1109/TSE.2024.3354739.
  • 7. Yuksek B, Inalhan G. Reinforcement learning based closed-loop reference model adaptive flight control system design. International Journal of Adaptive Control and Signal Processing. 2021;35(3):420-440. https://doi.org/10.1002/acs.3181.
  • 8. Guo Y, Ma C, Jing Z. A hybrid health monitoring approach for aircraft flight control systems with system-level degradation. IEEE Transactions on Industrial Electronics. 2022;70(7):7438-7448. https://doi.org/10.1109/TIE.2022.3201317.
  • 9. Zhao J, Lu P, Du C, Cao F. Active fault-tolerant strategy for flight vehicles: Transfer learning-based fault diagnosis and fixed-time fault-tolerant control. IEEE Transactions on Aerospace and Electronic Systems. 2024;60(1):1047-1059. https://doi.org/10.1109/TAES.2023.3333763.
  • 10. Kosova F, Unver HO. A digital twin framework for aircraft hydraulic systems failure detection using machine learning techniques. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2023;237(7): 1563- 1580. https://doi.org/10.1177/09544062221132697.
  • 11. Guo Y, Sun Y, He Y, Du F, Su S, Peng C. A datadriven integrated safety risk warning model based on deep learning for civil aircraft. IEEE Transactions on Aerospace and Electronic Systems. 2022;59(2): 1707- 1719. https://doi.org/10.1109/TAES.2022.3204224.
  • 12. Djalel D, Yahia K, Mohamed TM, Dimitri L. A new approach for remaining useful life estimation using deep learning. Automatic Control and Computer Sciences. 2023;57(1):93-102. https://doi.org/10.3103/s0146411623010030.
  • 13. Sun H, Yang F, Zhang P, Jiao Y, Zhao Y. An innovative deep architecture for flight safety risk assessment based on time series data. CMESComputer Modeling in Engineering & Sciences. 2024;138(3):2549-2569. https://doi.org/10.32604/cmes.2023.030131.
  • 14. Yildirim S, Rana ZA. Enhancing aircraft safety through advanced engine health monitoring with long short-term memory. Sensors. 2024;24(2):518-529. https://doi.org/10.3390/s24020518.
  • 15. Bell V, Moral Arce I, Mase JM, Figueredo GP. Anomaly detection for unmanned aerial vehicle sensor data using a stacked recurrent autoencoder method with dynamic thresholding. SAE International Journal of Aerospace. 2022;15(2):219-229. https://doi.org/10.48550/arXiv.2203.04734.
  • 16. Kant R, Saini P, Kumari J. Long short-term memory auto-encoder-based position prediction model for fixed-wing UAV during communication failure. IEEE Transactions on Artificial Intelligence. 2022;4(1):173-181. https://doi.org/10.1109/TAI.2022.3153763.
  • 17. Garai S, Paul RK, Kumar M, Choudhury A. Intraannual national statistical accounts based on machine learning algorithm. Journal of Data Science and Intelligent Systems. 2023;2(2):12-15. https://doi.org/10.47852/bonviewJDSIS3202870.
  • 18. Pandiyan V, Akeddar M, Prost J, Vorlaufer G, Varga M, Wasmer K. Long short-term memory based semisupervised encoder-Decoder for early prediction of failures in self-lubricating bearings. Friction. 2023; 11(1):109-124. https://doi.org/10.1007/s40544-021- 0584-3.
  • 19. Chinthamu N, Karukuri M. Data science and applications. Journal of Data Science and Intelligent Systems. 2023;1(1):83-91. https://doi.org/10.47852/bonviewJDSIS3202837.
  • 20. Li J, Jia Y, Niu M, Zhu W, Meng F. Remaining useful life prediction of turbofan engines using CNN-LSTMSAM approach. IEEE Sensors Journal. 2023;23(9):10241-10251. https://doi.org/10.1109/JSEN.2023.3261874.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bbe7b4e3-0504-438c-8b7e-d76121e1ef75
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.