PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of process parameters in removing wastewater impurities via progressive freeze crystallization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The research aims to investigate the effect of the process parameter of progressive freeze concentration to eliminate tricholorophenol in wastewater. Design/methodology/approach: A stainless steel crystallizer was used throughout the experiment. Simulated wastewater containing trichlorophenol (TCP) was used as a sample solution, and ethylene glycol was utilized as a coolant to induce the heat transfer at a very low temperature. Progressive freeze crystallization (PFC) is an approach to purify water by implementing the fundamental concept of difference freezing point. In short, the PFC system produces ice-crystal layer by layer on a cooled surface until it forms a large and single-crystal block, leaving the impurities in the mother liquor. Findings: It is established that operating time and initial concentration influence the PFC performance. The findings show that the intermediate operating time gave the highest removal of TCP in wastewater. Meanwhile, for the effect of initial concentration, it was discovered that the lowest initial concentration resulted in the best TCP reduction with high purity of the water was obtained. Research limitations/implications: The results can be complemented by studies of the effect of coolant temperature and solution movement. These two parameters are believed to potentially improve the PFC performance. Practical implications: The findings can be implemented to select the optimal operating condition to treat the wastewater, especially in the industrial area with hazardous TCP. Originality/value: The obtained results testify to the predominant influence of operating time and initial concentration on the PFC performance in eliminating TCP in wastewater.
Rocznik
Strony
56--61
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
  • School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
  • School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
  • School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
autor
  • School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
  • School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
Bibliografia
  • [1] J. Lin, M. Reddy, V. Moorthi, B.E. Qoma, Bacterial removal of toxic phenols from an industrial effluent, African Journal of Biotechnology 13/7 (2008) 2232- 2238.
  • [2] D. Krishnaiah, S.M. Anisuzzaman, A. Bono, R. Sarbatly, Adsorption of 2,4,6-trichlorophenol (TCP) onto activated carbon, Journal of King Saud University - Science 25/3 (2013) 251-255. DOI: https://doi.org/10.1016/j.jksus.2012.10.001
  • [3] E. Bazrafshan, P. Amirian, A.H. Mahvi, A. Ansari- Moghaddam, Application of adsorption process for phenolic compounds removal from aqueous environments: A systematic review, Global Nest Journal 18/1 (2016) 146-163. DOI: https://doi.org/10.30955/gnj.001709
  • [4] A. Yazdanbakhsh, A. Eslami, G. Moussavi, M. Rafiee, A. Sheikhmohammadi, Photo-assisted degradation of 2,4,6-trichlorophenol by an advanced reduction process based on sulfite anion radical: Degradation, dechlorination and mineralization, Chemosphere 191 (2018) 156-165. DOI: https://doi.org/10.1016/j.chemosphere.2017.10.023
  • [5] N.A. Khan, G.R. Sinha, S. Ahmed, A. Feshchenko, F. Changani, A. Qureshi, M.A. Mazhar, I. Neklonskyi, Collection of hospital wastewater data using deduplication approaches, Archives of Materials Science and Engineering, 104/1 (2020) 5-18. DOI: https://doi.org/https://doi.org/10.5604/01.3001.0014.3 864
  • [6] M. Zhu, J. Lu, Y. Zhao, Z. Guo, Y. Hu, Y. Liu, C. Zhu, Photochemical reactions between superoxide ions and 2,4,6-trichlorophenol in atmospheric aqueous environments, Chemosphere 279 (2021) 130537. DOI: https://doi.org/https://doi.org/10.1016/j.chemosphere.2 021.130537
  • [7] S. Jiang, Y. Li, B.P. Ladewig, A review of reverse osmo-sis membrane fouling and control strategies, Science of The Total Environment 595 (2017) 567-583. DOI: https://doi.org/https://doi.org/10.1016/j.scitotenv.2017 .03.235
  • [8] F.H. Ab Hamid, S.A. Salim, M.S. Mat-Shayuti, Optimization of progressive freeze concentration on stormwater purification via response surface methodology, Asia-Pacific Journal of Chemical Engineering 15/3 (2020) e2419. DOI: https://doi.org/https://doi.org/10.1002/apj.2419
  • [9] N.A. Amran, M. Jusoh, Effect of coolant temperature and circulation flowrate on the performance of a vertical finned crystallizer, Procedia Engineering 148 (2016) 1408-1415. DOI: https://doi.org/https://doi.org/10.1016/j.proeng.2016.0 6.576
  • [10] I.C. da S. Haas, J.S. de Espindola, G.R. de Liz, A.S. Luna, M.T. Bordignon-Luiz, E.S. Prudêncio, J.S. de Gois, I.M. Toaldo Fedrigo, Gravitational assisted three-stage block freeze concentration process for producing enriched concentrated orange juice (Citrus sinensis L.): Multi-elemental profiling and polyphenolic bioactives, Journal of Food Engineering 315 (2022) 110802. DOI: https://doi.org/https://doi.org/10.1016/j.jfoodeng.2021. 110802
  • [11] R. Subagyo, I.N.G. Wardana, A. Widodo, E. Siswanto, The role of hydrogen gas bubble in hydrophobic properties in mixed micro layer (Al2O3+Mg), Archives of Materials Science and Engineering 105/1 (2020) 5-16. DOI: https://doi.org/https://doi.org/10.5604/01.3001.0014.5 119
  • [12] J. Sánchez, E. Hernandez, J. M Auleda, M. Raventós, Review: Freeze Concentration Technology Applied to Dairy Products, Food Science and Technology International 17/1 (2011) 5-13. DOI: https://doi.org/10.1177/1082013210382479
  • [13] J.E. Vuist, R. Linssen, R.M. Boom, M.A.I. Schutyser, Modelling ice growth and inclusion behaviour of sucrose and proteins during progressive freeze concentration, Journal of Food Engineering 303 (2021) 110592. DOI: https://doi.org/https://doi.org/10.1016/j.jfoodeng.2021. 110592
  • [14] S. Moharramzadeh, S.K. Ong, J. Alleman, K.S. Cetin, Parametric study of the progressive freeze concentration for desalination, Desalination 510 (2021) 115077. DOI: https://doi.org/https://doi.org/10.1016/j.desal.2021.115 077
  • [15] O. Miyawaki, C. Omote, T. Koyanagi, T. Sasaki, H. Take, A. Matsuda, K. Tadokoro, A. Miwa, S. Kitano, Progressive freeze-concentration of blueberry juice and its application to produce blueberry wine, Journal of the Japan Society for Food Engineering 18/1 (2017) 45-51 (in Japanese). DOI: https://doi.org/10.11301/jsfe.16481
  • [16] N.A. Amran, S. Samsuri, M. Jusoh, Effect of Freezing Time and Shaking Speed on the Performance of Progressive Freeze Concentration via Vertical Finned Crystallizer, International Journal of Automotive and Mechanical Engineering 15/2 (2018) 5356-5366. DOI: https://doi.org/10.15282/ijame.15.2.2018.15.0412
  • [17] C.E. Enyoh, B.O. Isiuku. 2,4,6-Trichlorophenol (TCP) removal from aqueous solution using Canna indica L.: kinetic, isotherm and Thermodynamic studies, Chemistry and Ecology 37/1 (2021) 64-82. DOI: https://doi.org/10.1080/02757540.2020.1821673
  • [18] X. Gu, M. Watanabe, T. Suzuki, O. Miyawaki, Limiting Partition Coefficient in a Tubular Ice System for Progressive Freeze-concentration, Food Science and Technology Research 14/3 (2008) 249-252. DOI: https://doi.org/10.3136/fstr.14.249
  • [19] L. Tongshuai, Z. Yan, T. Yuanqing, W. Xiaozhuang, Z. Chen, W. Nan, L. Yucan, Application of progressive freeze concentration in the removal of Ca2+ from wastewater, Journal of Water Process Engineering 46 (2022) 102619. DOI: https://doi.org/10.1016/j.jwpe.2022.102619
  • [20] M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta 76/5 (2008) 965-977. DOI: https://doi.org/10.1016/j.talanta.2008.05.019
  • [21] M. Jusoh, N. Yahya, Z.Y. Zakaria, Effect of flowrate and circulation time on fractionation of refined bleached and deodorized palm oil using progressive freeze concentration method, Jurnal Teknologi 67/3 (2014) 117-122. DOI: https://doi.org/10.11113/jt.v67.2774
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bbe23381-51b9-4e79-8b26-b31799336086
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.