Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We prove that symmetric Meixner distributions, whose probability densities are proportional to |Γ(t + ix)|2, are freely infinitely divisible for 0 < t ≤ 1/2. The case t = 1/2 corresponds to the law of Lévy’s stochastic area whose probability density is 1/cosh(πx). A logistic distribution, whose probability density is proportional to 1/cosh2(πx), is also freely infinitely divisible.
Czasopismo
Rocznik
Tom
Strony
363--375
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
autor
- Institute of Mathematics, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
autor
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Laboratoire de Mathématiques de Besançon, Université de Franche-Comté, 16 route de Gray, 25030 Besançon cedex, France
Bibliografia
- [1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Washington 1970.
- [2] M. Anshelevich, S. T. Belinschi, M. Bożejko, and F. Lehner, Free infinite divisibility for Q-Gaussians, Math. Res. Lett. 17 (2010), pp. 905-916.
- [3] O. Arizmendi and S. T. Belinschi, Free infinite divisibility for ultrasphericals, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 16 (2013), 1350001.
- [4] O. Arizmendi and T. Hasebe, On a class of explicit Cauchy-Stieltjes transforms related to monotone stable and free Poisson laws, Bernoulli, to appear.
- [5] O. Arizmendi and T. Hasebe, Classical and free infinite divisibility for Boolean stable laws, Proc. Amer. Math. Soc., to appear. arXiv:1205.1575.
- [6] O. Arizmendi, T. Hasebe, and N. Sakuma, On the law of free subordinators, ALEA Lat. Am. J. Probab. Math. Stat. 10 (2) (2013), pp. 271-291.
- [7] S. T. Belinschi, M. Bożejko, F. Lehner, and R. Speicher, The normal distribution is -infinitely divisible, Adv. Math. 226 (4) (2011), pp. 3677-3698.
- [8] H. Bercovici and D. Voiculescu, Free convolution of measures with unbounded support, Indiana Univ. Math. J. 42 (3) (1993), pp. 733-773.
- [9] L. Bondesson, Generalized Gamma Convolutions and Related Classes of Distributions and Densities, Lecture Notes in Statist., Vol. 76, Springer, New York 1992.
- [10] T. Hasebe, Free infinite divisibility of measures with rational function densities, preprint.
- [11] R. Koekoek, P. A. Lesky, and R. F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their q-Analogues, Springer, Berlin 2010.
- [12] H. van Leeuwen and H. Maassen, A q-deformation of the Gauss distribution, J. Math. Phys. 36 (9) (1995), pp. 4743-4756.
- [13] P. Lévy, Wiener’s random functions, and other Laplacian random functions, Proc. 2nd Berkeley Symp. on Math. Statist. and Probab., Univ. California Press, 1951, pp. 171-187.
- [14] A. Nica and R. Speicher, Lectures on the Combinatorics of Free Probability, London Math. Soc. Lecture Notes Ser., Vol. 335, Cambridge University Press, 2006.
- [15] OEIS Foundation Inc. (2011), The On-Line Encyclopedia of Integer Sequences, http://oeis.org/A158119.
- [16] W. Schoutens and J. L. Teugels, Lévy processes, polynomials and martingales, Comm. Statist. – Stoch. Mod. 14 (1998), pp. 335-349.
- [17] D. Voiculescu, Addition of certain non-commutative random variables, J. Funct. Anal. 66 (1986), pp. 323-346.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bbe11b5f-3916-4fd5-b7bd-802d5adfdf76