PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Backlash fault suppression using LQ optimal control based rst controllers in wind turbine systems using bond graphs and matlab/simulink

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The presence of backlash in wind turbines is a source of limitations as it introduces nonlinearities that reduce their efficiency in speed/torque control which affect the performance of the power quality. Because of production tolerances during rotation, the teeth contact is lost for a small angle; until it is re-established, it produces a backlash phenomenon. The desire to eliminate this phenomenon is often hard to realise due to the nonlinear dynamic behaviour, which arises with the presence of backlash fault in a system. Therefore, the goal of this study is to develop an LQ optimal control structure in a form of an R-S-T controller in order to reduce the disturbing torque transmitted inside the dead zone of a gearbox in the wind turbine system. The actual system is also developed to be used as a demonstration model at lectures or presentations. The efficacy of the proposed control is illustrated via simulations.
Rocznik
Strony
154--163
Opis fizyczny
Bibliogr. 28 poz., rys., wykr.
Twórcy
autor
  • Automatic Laboratory, Electrical Engieneering Departement, Faculty of Technology, 20 August 1955 University of Skikda, Algeria
  • Automatic Laboratory, Electrical Engieneering Departement, Faculty of Technology, 20 August 1955 University of Skikda, Algeria
  • Automatic Laboratory, Electrical Engieneering Departement, Faculty of Technology, 20 August 1955 University of Skikda, Algeria
  • Automatic Laboratory, Electrical Engieneering Departement, Faculty of Technology, 20 August 1955 University of Skikda, Algeria
  • Automatic Laboratory, Electrical Engieneering Departement, Faculty of Technology, 20 August 1955 University of Skikda, Algeria
Bibliografia
  • 1. Adlene R., Abderrazak L. (2018), Study on the influence of backlash phenomenon on wind turbine power using bond graph approach, J Braz. Soc. Mech. Sci. Eng. 40, 91.
  • 2. Amir R., other authors (2014), Effects of Floating Sun Gear in a Wind Turbine’s Planetary Gearbox with Geometrical Imperfections, Wind Energy, 18(12), 2105-2120.
  • 3. Cadiou J.C., M’Sirdi N.K. (1995), Modelization and Analysis of a System with Torque Transmitted through a Backlash, 9th world congress on the theory of machines and mechanisms, IFT.MM, 2, 1467-1470.
  • 4. Čulina I. (2011), Desing of mechanical assembly for inversingation of backlash effects in mechatronic systems, Doctoral dissertation, Fakultet elektrotehnike i računarstva, Sveučilište u Zagrebu.
  • 5. Figel K. (2019), Backlash models for drivability simulation, 10.13140/RG.2.2.29154.79045.
  • 6. Ganesh P.P., Senroy N., Kar I.N. (2018), Modeling and impact of gear train backlash on performance of DFIG wind turbine system, Electric Power Systems Research, 163, 356–364.
  • 7. Gang T., Kokotović P.V. (1992), Adaptive Control of Systems with Backlash, IFAC Proceedings Volumes, 25, 87-93.
  • 8. Guo-Qiang W., Shu-Nan W., Yu-Guang B,. Lei L. (2013), Experimental studies on model reference adaptive control with integral action employing a rotary encoder and tachometer sensors, Sensors, 13(4), 4742–4759.
  • 9. Lagerberg A., Egardt B. (2007), Backlash estimation with application to automotive powertrains, IEEE Transactions on Control Systems Technology, 15(3), 483–493.
  • 10. Makosi C.A.M., Rinderknecht S., Binz R., Uphaus F., Kirschbaum F. (2017), Implementation of an open-loop controller to design the longitudinal vehicle dynamics in passenger cars,” SAE Technical Paper 2017-01-1107.
  • 11. Marton L., Lantos B. (2009), Control of mechanical systems with Stribeck friction and backlash, Systems and Control Letters, 58(2), 141-147.
  • 12. Mohamed A.A., Xiangjie L., Di J. (2020), Design and implementation of partial offline fuzzy model-predictive pitch controller for large-scale wind-turbines, Renewable Energy 145, 981-996.
  • 13. Mokhtari M., Marie M. (2012), Engineering Applications of MATLAB® 5.3 and SIMULINK® 3, Translated from the French by Mohand Mokhtari, Michel Marie, Cécile Davy and Martine Neveu. Springer Science & Business Medi.
  • 14. Moradian K. (2014), Speed control of mechanical systems with backlash, Indian J. Sci. Res, 1(2), 94-99.
  • 15. Munteanu B.A.I., Cutululis N.A., Caenga E. (2008), Optim. Control Wind Energy Syst. towards a global approach, Springer Science & Business Media.
  • 16. Naik K.A., Gupta C.P. (2017), Fuzzy logic based pitch angle controller/or SCIG based wind energy system, In 2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE) (pp. 60-65), IEEE.
  • 17. Odgaard P.F., Stoustrup J., Kinnaert M. (2013), Fault-Tolerant Control of Wind Turbines: A Benchmark Model, IEEE Transactions on Control Systems Technology, 21(4), 1168-1182.
  • 18. Qikun S, Yan S, Renfu J, Peng S. (2019), Design on Type-2 Fuzzy-based Distributed Supervisory Control with Backlash-like Hysteresis, IEEE Transactions On Fuzzy Systems, vol, no, pages.
  • 19. Ragheb A., Ragheb M. (2010), Wind turbine gearbox technologies, In Proceedings of the 1st International Nuclear & Renewable Energy Conference (INREC), 1–8.
  • 20. Ruderman M,. Yamada S., Fujimoto H. (2018), Backlash Identification in Two-Mass Systems by Delayed Relay Feedback, Journal of Dynamic Systems, Measurement, and Control, 141(6), pages.
  • 21. Ruderman M., Krettek J., Hoffmann F., Bertram T. (2008), Optimal state space control of dc motor, In Proceedings of the 17th world congress the international federation of automatic control. Seoul, Korea, 5796–5801.
  • 22. Sami K., other authors (2020), Maximum power extraction framework using robust fractionalorder feedback linearization control and GM-CPSO for PMSG-based WECS, Wind Engineering, vol, no, pages.
  • 23. Tao L., Zhang B., Feng Z., Zheng B-C. (2014), Robust Control with Engineering Applications, Mathematical Problems in Engineering, vol, no, pages.
  • 24. Tomonobu S. (2018), Renewable Energy, Applied Sciences, vol, no, pages.
  • 25. Yangshou X., Kang H., Fengwei X., Yong Y., Meng S., Hua Z. (2019), Research on the Influence of Backlash on Mesh Stiffness and the Nonlinear Dynamics of Spur Gears, Applied Sciences, 9(5), 1029.
  • 26. Yonezawa H., other authors (2019), Vibration Control of Automotive Drive System with Nonlinear Gear Backlash, Journal of Dynamic Systems, Measurement, and Control, 141(12), pages.
  • 27. Zhao X., Chen C., Liu J., Zhang L. (2015), Dynamic Characteristics of a Spur Gear Transmission System for a Wind Turbine. In 2015 International Conference on Automation, Mechanical Control and Computational Engineering. Atlantis Press, vol, no, pages.
  • 28. Zhenxing L., Zhansheng L., Jingming Z., Guanghui Z. (2017), Study on Interactions Between Tooth Backlash and Journal Bearing Clearance Nonlinearity in Spur Gear Pair System, Mechanism and Machine Theory, 107, 229-245.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bbdddc15-543e-4912-a456-76072b959869
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.