PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heat transfer analysis of non-Newtonian natural convective fluid flow using Homotopy Perturbation and Daftardar-Gejiji & Jafari Methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the analytical solution of natural convective heat transfer of a non-Newtonian fluid flow between two vertical infinite plates using the Homotopy Perturbation Method (HPM) and Daftardar-Gejiji & Jafari Method (DJM) is presented. The heat transfer problem of natural convection is observed in many engineering fields including geothermal systems, heat exchangers, petroleum reservoirs, nuclear waste reserves, etc. The problem which is modelled as fully coupled nonlinear ordinary differential equations requires special analytical techniques for its solution. The solutions are obtained using an exact analytical method: the Homotopy Perturbation Method (HPM) and a semi-analytical method: the Daftardar-Gejiji & Jafari Method (DJM). These solutions are compared with solutions obtained from the Runge-Kutta numerical method. The results are in good agreement with the numerical solutions. The effects of the Eckert number, Prandtl number and the non-Newtonian fluid viscosity parameter on the non-dimensional temperature and velocity of the fluid are investigated. The results obtained from the analytical method show that the method can be applied to predict excellent results of the problem and can be used for parametric studies of the problem. From the results, it is shown that when the Prandtl number and the Eckert number are increased, there is an increase in both temperature and fluid flow velocity.
Rocznik
Strony
5--18
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Department of Systems Engineering, University of Lagos Akoka, Lagos, Nigeria
autor
  • Department of Mechanical Engineering, University of Lagos Akoka, Lagos, Nigeria
Bibliografia
  • [1] Cheng, C. (2009). Natural convection heat transfer of non-Newtonian fluids in porous media from a vertical cone under mixed thermal boundary conditions. International Communications in Heat and Mass Transfer, 36, 693-697.
  • [2] Pourmehran, O., Rahimi-Gorji, M., Tavana, M., Gorji-Bandpy, M., & Ganji, D.D. (2017). Heat transfer investigation of non-Newtonian fluid between two vertically infinite flat plates by numerical and analytical solutions. Heighpubs Biomed Sci. Eng. 1, 001-011.
  • [3] Hatami, M., & Ganji, D.D. (2014). Natural Convection of Sodium Alginate (SA) Non-Newtonian Nanofluid Flow between Two Vertical Flat Plates by Analytical and Numerical Methods. Case Studies in Thermal Engineering, Elsevier, Vol. 2, 14-22.
  • [4] Ghadikolaei, S.S., Hosseinzadeh, Kh., Yassari, M., Sadeghi, H., & Ganji, D.D. (2018). Analytical and numerical solution of non-Newtonian second-grade fluid flow on a stretching sheet. Thermal Science and Engineering Progress, 5, 309-316.
  • [5] Hatami, M., Hatami, J., & Ganji, D.D. (2014). Computer simulation of MHD blood conveying gold nanoparticles as a third grade non-Newtonian nanofluid in a hollow porous vessel. Computer Methods and Programs in Medicine, 113, 632-641.
  • [6] Hatami, M., & Ganji, D.D. (2013). Heat transfer and flow analysis for SA-TiO2 non-Newtonian nanofluid passing through the porous media between two coaxial cylinders. Journal of Molecular Liquids, 188, 155-161.
  • [7] Gorla, R.S., & Bakier, A.Y. (2011). Thermal analysis of natural convection and radiation in porous fins. Int. Commun. Heat Mass Transfer, 38, 638-645.
  • [8] Rahbari, A., Fakour, M., Hamzehnezhad, A., Akbari, Vakilabadi, M., & Ganji, D.D. (2017). Heat transfer and fluid flow of blood with nanoparticles through porous vessels in a magnetic field: A quasi-one dimensional analytical approach. Mathematical Biosciences, 283, 38-47.
  • [9] Darvishi, M.T., Gorla, R.S.R., Khani, R.S., Khani, F., & Aziz, A.E. (2015). Thermal performance of a porus radial fin with natural convection and radiative heat losses. Therm. Sci., 19(2), 669-678.
  • [10] Hayat, T., Ellahi, R., & Mahomed, F.M. (2008). Exact solutions for thin film flow of a third grade fluid down an inclined plane. Chaos Solitons Fractals, 38(5), 1336-1341.
  • [11] Ellahi, R., & Riaz, A. (2010). Analytical solutions for MHD flow in a third-grade fluid with variable viscosity. Math. Comput. Model., 52, 1783-1793.
  • [12] Murthy, P.S.V.N., & Singh, P. (1997). Thermal dispersion effects on non-Darcy natural convection over horizontal plate with surface mass flux. Archive of Applied Mechanics, 67, 487-495.
  • [13] Magyari, E., & Keller, B. (2000). Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls. European Journal of Mechanics B-Fluids, 19, 109-122.
  • [14] Mohyud-Din, S.T. (2010). Variational iteration method for Hirota-Satsuma Model using He’s polynomials. Zeitschriftfur Naturforschung A-A Journal of Physical Sciences, 65(6-7), 525-528.
  • [15] Domairry, D., Sheikholeslami, M., Ashorynejad, H.R., Reddy, R.S., & Gorla, K.M. (2012). Natural convection flow of a non-Newtonian nanofluid between two vertical flat plates. Proceedings of the Institution of Mechanical, Part N: Journal Nanoengineering and Nanosystems, 225(3), 115-122.
  • [16] Hasanpour, A., Parvizi Omran, M., Ashorynejad, H.R., Ganji, D.D., Kadhim Hussein, A., & Moheimani, R. (2011). Investigation of heat and mass transfer of MHD flow over the movable permeable plumb surface using HAM. Middle-East Journal of Scientific Research, 9(4), 510-515.
  • [17] Sheikholeslami, M., Ganji, D.D., Ashorynejad, H.R., & Ronki, H.B. (2012). Analytical investigation of Jeffery-Hamel flow with high magnetic field and nanoparticle by Adomian decomposition method. Applied Mathematics and Mechanics - English Edition, 33(1), 25-36.
  • [18] Saedodin, S., & Shahbabaei, M. (2013). Thermal analysis of natural convection in porous fins with homotopy perturbation method (HPM). Arab. J. Sci. Eng., 38, 2227-2231.
  • [19] Hoshyar, H.A., Rahimipetroudi, I., Ganji, D.D., & Majidian, A.R. (2015). Thermal performance of porous fins with temperature-dependent heat generation via Homotopy perturbation method and collocation method. J. Appl. Math. Computat. Mech., 14(4), 53-65.
  • [20] Sheikholeslami, M., Ashorynejad, H.R., Ganji, D.D., & Yildirim, A. (2012). Homotopy perturbation method for three dimensional problem of condensation film on inclined rotating disk, Scientia Iranica B, 19(3), 437-442.
  • [21] Zhou, J.K. (1986). Differential Transformation and Its Applications for Electrical Circuits. Wuhan: Huazhong University Press (in Chinese).
  • [22] Daftardar-Gejji, V., & Bhalekar, S. (2008). An iterative method for solving fractional differential equations. Proc. Appl. Math. Mech., 7, 2050017-18.
  • [23] Jafari, H., Seifi, S., Alipoor, A., & Zabihi, M. (2009). An iterative method for solving linear and nonlinear fractional diffusion-wave equation. Int. e-J Numer Anal. Relat. Topics, 3, 20-32.
  • [24] Ahmed, N., Jan, S.U., Khan, U., & Mohyud-Din, S.T., (2015). Heat transfer analysis of thirdgrade fluid flow between parallel plates: Analytical solution. Int. J. Appl. Comput. Math.
  • [25] Rajagopal, K.R., & Ty, N. (1985). Natural convection flow of a non-Newtonian fluid between two vertical flat plates. Acta Mech., 54, 239-246.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bbdda3f3-9145-4328-9438-0bbad9f34fac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.