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Abstract. In this paper, the analytical solution of natural convective heat transfer of a non-

Newtonian fluid flow between two vertical infinite plates using the Homotopy Perturbation 

Method (HPM) and Daftardar-Gejiji & Jafari Method (DJM) is presented. The heat transfer 

problem of natural convection is observed in many engineering fields including geothermal 

systems, heat exchangers, petroleum reservoirs, nuclear waste reserves, etc. The problem 

which is modelled as fully coupled nonlinear ordinary differential equations requires spe-

cial analytical techniques for its solution. The solutions are obtained using an exact analyti-

cal method: the Homotopy Perturbation Method (HPM) and a semi-analytical method: the 

Daftardar-Gejiji & Jafari Method (DJM). These solutions are compared with solutions ob-

tained from the Runge-Kutta numerical method. The results are in good agreement with the 

numerical solutions. The effects of the Eckert number, Prandtl number and the non-

Newtonian fluid viscosity parameter on the non-dimensional temperature and velocity of 

the fluid are investigated. The results obtained from the analytical method show that the 

method can be applied to predict excellent results of the problem and can be used for para-

metric studies of the problem. From the results, it is shown that when the Prandtl number 

and the Eckert number are increased, there is an increase in both temperature and fluid flow 

velocity.  
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1. Introduction 

The problem of heat transfer in non-Newtonian fluids flowing between two  

vertical infinite parallel plates in free convection has been observed in many engi-
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neering applications including petroleum reservoirs, heat exchangers, geothermal 

systems, nuclear waste reserves. etc. This problem is of great concern and has attract- 

ed a lot of interest and study in the past few decades. Quite a number of studies 

have been carried out on problems related to it. The natural convective heat transfer 

of non-Newtonian fluid in porous media has been studied [1]. The heat transfer of 

non-Newtonian fluid in various applications has been studied by applying numerical 

methods and analytical methods [2-8]. Darvishi et al. [9] investigated the effects  

of heat losses in porous fin in natural convection and in the radiation process.  

The rheological properties of non-Newtonian fluids are complicated, and it is 

difficult to put them all in one mathematical model. One of the mathematical models 

used for such fluids is the “third grade fluid” model. This model is most often used 

for viscoelastic fluids [10, 11] and it is represented by nonlinear differential equa-

tions. Numerical methods were used to obtain solutions for some of them [12] and 

some by perturbation methods [13]. The major obstacles for numerical methods  

in obtaining an appropriate solution are stability and convergence, while the limita-

tion of method of perturbation is the occurrence of a small parameter. Due to this 

occurrence, a number of analytical methods have been developed including the 

Variation Iteration Method (VIM) [14], the Differential Transform Method (DTM) 

[15], the Homotopy Analysis Method (HAM) [16] and the Adomian Decomposi-

tion Method (ADM) [17]. One of the new analytical methods that was developed to 

overcome the shortcoming of the perturbation method is the Homotopy Perturbation 

Method.  

The Homotopy Perturbation Method (HPM) is a powerful analytical method for 

solving nonlinear differential equations. It is an exact analytical tool that does not 

require any approximation.  Various studies have been done with the Homotopy 

Perturbation Method (HPM) such as use of the Homotopy Perturbation Method  

for the analysis of heat transfer in longitudinal fins [18], the use of the Homotopy 

Perturbation Method (HPM) and collocation method (CM) for analysis of thermal 

performances of porous fin with temperature-dependent heat generation [19] and 

the Homotopy perturbation method for a three dimensional problem of condensa-

tion film on an inclined rotating disk [20]. Another method used in this study for 

solving the problem of heat transfer of a non-Newtonian natural convective fluid 

flow between two vertical infinite flat plates is a new iterative method called the 

Daftardar-Jafari method (DJM). It was developed in 2006 and has been shown to 

be very efficient in solving nonlinear problems [21-23]. The Daftardar-Jafari method 

was developed to improve upon the Adomian Decomposition Method (ADM).  

The method converges its solution to the exact solution after successive approxi-

mations [21-23]. Some major advantages of this method are that it comes with its 

associated error control procedures and is used to solve nonlinear differential  

equations of integral and fractional order.  

Hence, the aim of this study is to provide solutions to the problem of heat trans-

fer of non-Newtonian natural convective fluid between two vertically infinite plates 

by using the Homotopy Perturbation Method (HPM) and the Daftardar-Gejiji  

& Jafari method (DJM). These solutions were compared with numerical method 
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and the effects of the Eckert number, the Prandtl number and the non-Newtonian 

fluid viscosity parameter on temperature and velocity were investigated.  

2. Description of the problem 

The equations of the heat transfer of the non-Newtonian fluid flow between  

vertical plates [24] are obtained from the basic law of conservation of mass,  

momentum and energy for an incompressible fluid and are given respectively by: 

 = 0V  (1) 

 + div ( )   
V

ρ fb
D

Dt
  (2) 

 2D

Dt
   p

T
ρc T LK   (3) 

where τ, �, fb, T, K, V, ��, and L represent the stress tensor, constant fluid den-

sity, body force, temperature field, thermal conductivity, velocity field and specific 

heat at constant pressure and the gradient of V respectively. The constitutive rela-

tion, depicting the non-Newtonian fluid is  

    2
1 1 2 2 1 1 3 2 1 2 2 1 3 2 1        A A A A A A A A A ApI tr       (4) 

where � denotes pressure, � is coefficient of viscosity and ��, ��, 	�, 	�, 	
 are 

the material constants. ��, ��, �
 are Erickson tensors, and are defined by 

 �� = 
 + 
� (5) 

�� = � ����
�� + ��������� �� + ����� ��� ����, � ≥ 1 (6) 

 

 
Fig. 1. Schematic diagram of the two vertically infinite parallel flat plates 

The item shown in Figure 1 consists of two vertical parallel plates. If a steady 

flow of the incompressible non-Newtonian fluid between two infinite parallel 
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plates of distance 2! apart is considered, with the walls at " = +! and " = −! and 

a temperature $� and $� respectively where $� > $�. As a result of temperature 

difference, the fluid at " = +! will fall and the fluid at " = −! will rise.  

A one-dimensional temperature and velocity field of the form in Eq. (7) is  

required.  

 � = &'�(�, 0, 0*,     + = ,�(� (7) 

Following Rajagopal [25], the variables are defined as  

 
0

,
u

U
U

  , 
x

b
 

1 2

,mT T

T T






 (8) 

And equations (2) and (3) are reduced to a pair of coupled nonlinear ordinary  

differential equations  

 

22 2

2 2
6 0

d U dU d U

dd d
 

 
 

   
 

 (9) 

 

2 42 2

2 2
Ec Pr 2 Ec Pr 0

d dU d U dU

d dd d




  
   

          
   

 (10) 

where the Eckert number (Ec), the Prandtl number (Pr) and a dimensionless quan-

tity; the non-Newtonian viscosity (δ) have the form  

 
 

  22
2 3 00

2
1 2

6
Ec , Pr ,

β β UU μc
δ

c T T k μb


  


   (11) 

And the specific heat of the fluid is given as c.  

The boundary conditions are  

        1 1
1 0, 1 , 1 0, 1

2 2
U U          (12) 

3. Method of solution: Homotopy Perturbation Method (HPM) 

Consider the given function  

 -�'� − .�/� = 0 (13) 

With given boundary conditions as  

0 1', 2'
2�3 = 0 (14)
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Where -�'� is expressed as  

 -�'� = 4�'� − 5�'� (15) 

The Homotopy Perturbation procedure is shown as:  

            0 0, 0        H v p L v L u p L u p N v f r  (16) 

or            0, 1 0           H v p p L v L u p A v f r  (17) 

The solution is represented by 

 2 3 4 5
0 1 2 3 4 5U u pu p u p u p u p u       (18) 

 2 3 4
0 1

5
2 3 4 5p p p p p            (19) 

The homotopy perturbation solution is obtained as follows  

    
22 2

2 2
, 1 6 0

    
          

     

d U dU d U
H U p p p

dd d
 

 
 (20) 

    
2 42 2

2 2
, 1 Ec Pr 2 Ec Pr 0

d dU d U dU
H p p p

d dd d


 

  

      
                 

       
 (21) 

A solution of Eqs. (21) and (22) can then be obtained in the form  

              2 3 4 5
0 1 2 3 4 5U ...u pu p u p u p u p u              (22) 

              2 3 4 5
0 1 2 3 4 5 ...p p p p p                  (23) 

Substituting Eqs. (18) and (19) into (20) and (21), yields  

 
 

   

2 2 3 4 5
0 1 2 3 4 5

2

2
2 3 4 5 2 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

2

2 3 4 5
0 1 2 3 4 5

1

6
0

d u pu p u p u p u p u
p

d

d u pu p u p u p u p u d u pu p u p u p u p u

p d d

p p p p p




 

     

     
  
 
 

                 
  

      

 

 (24) 
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 
 

   

 

2 2 3 4 5
0 1 2 3 4 5

2

2
2 3 4 5 2 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

2

4
2 3 4 5

0 1 2 3 4 5

1

EcPr

0

2 EcPr

d p p p p p
p

d

d u pu p u p u p u p u d u pu p u p u p u p u

d d

p

d u pu p u p u p u p u

d

     



 




     
  
 
 

                
    

      
  
    

 

  (25) 

Equating the coefficients of �6, ��, ��, �
, �7, �8 in equations (24) and (25) to 

zero, we obtain equations with respect to '6, '�, '�, '
, '7, '8, and 96, 9�, 9�, 

9
, 97, 98. 

Solving the equations for coefficients of 0p  in Eqs. (24) and (25) using boundary 

condition (12)  

 0 0u  0

1

2
    (26) 

Using Eq. (26) and boundary condition (12), solving the equations for coefficients 

of 1p  in Eqs. (24) and (25), we obtained  

  2
1

1
1 ,

12
u     1 0  (27) 

Using Eq. (27) and boundary condition (12), solving the equations for coefficients 

of 2p  in Eqs. (24) and (25), we obtained  

 2 0u  ,  2 0   (28) 

Using Eq. (28) and boundary condition (12), solving the equations for coefficients 

of 3p  in Eqs. (24) and (25), we obtained  

 3 0,u  3 0   (29) 

Using Eq. (29) and boundary condition (12), solving the equations for coefficients 

of 4p  in Eqs. (24) and (25), we obtained  

 7 5 3
4 45 63 35 17

10080
      u


     (30) 

 7 5 3
4

Ec Pr
45 63 35 17

60480
            (31) 
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Using Eqs. (30) and (31) and boundary condition (12), solving the equations for 

coefficients of 5p  in Eqs. (24) and (25), we obtained  

 9 7 5 3
5

Ec Pr
15 36 42 68 47

1451520
      u       (32) 

 10 8 6 4 2
5

Ec Pr
63 135 126 70 35 19

725760
        


       (33) 

Hence ( )U   and ( )   are defined as:  

   

 

3 3 5 7

3 5 7 9

1 1
( ) 17 35 63 45

12 10080

1
47 Ec Pr 68Ec Pr 42 Ec Pr 36Ec Pr 15Ec Pr

1451520

      

    

U       

    
 

  (34) 

 

 3 5 7

2 4 6

8 10

1
( ) 17 Ec Pr 35Ec Pr 63Ec Pr 45Ec Pr

2 60480

19 Ec Pr 35Ec Pr 70Ec Pr 126Ec Pr1
        

725760 135Ec Pr 63Ec Pr

     

   
     


     

   

 

 (35) 

4. Method of solution: Daftardar-Gejiji & Jafari Method (DJM) 

The procedure of the Daftardar-Gejiji & Jafari method (DJM) is given as follows: 

Consider the following equation 

        u x f x N u x  (36) 

where N is a nonlinear operator from a Banach space B → B and f is a known func- 

tion  1 2, ,... nx x x x . The solution u in Eq. (36) have a form of series solution as 

    
0






n

u x x  (37) 

The nonlinear operator N can be decomposed as 

  
1

0

0 0 0 0

  

   

       
                  

   
i i

i j j

n i j j

N u N u N u N u  (38) 
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From equations (37) and (38), equation (36) is equivalent to 

  
1

0

0 0 0 0

  

   

     
               

   
i i

i j j

n i j j

u f N u N u N u  (39) 

Hence, the solution to the governing equation (9), (10) and boundary conditions 

(12), are given by the recurrence relation 

 0 0,   u a b c d   (40) 

And the DJM establishes that the step by step solution of any function is obtained 

in the form; 

 

   
   

   
   

0 1 0

0 1 2 0 1

0 1 2 4 0 1 2

0 1 2 4 5 0 1 2

2

3

4

5 4

                              

                    

         

  

    

      

        

f N N f N

f N N N f N N

f N N N N f N N N

f N N N N N f N Nf N

f

f

N

f

 (41) 

So, the momentum equation becomes  

 

2 2

1 0 0 02

0 0

d d
6

d d

  
       

 u u u d d

 

   
 

 (42) 

 

     
2 2

2 0 1 0 1 0 12

0 0

2 2

0 0 02

0 0

d d
6

d d

d d
6

d d

  
          

             

 

 

u u u u u d d

u u d d

 

 

    
 

   
 

 (43) 

 

     

     

2 2

3 0 1 2 0 1 2 0 1 22

0 0

2 2

0 1 0 1 0 12

0 0

d d
6

d d

d d
6

d d

  
             

                

 

 

u u u u u u u d d

u u u u d d

 

 

     
 

    
 

 (44) 

And the energy equation becomes  
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2 42

1 0 0 02

0 0

d d d
Ec Pr 2 EcPr

d dd

    
           

  u u u d d

 

   
 

 (45) 

     
2 42

2 0 1 0 1 0 12

0 0

2 42

0 0 02

0 0

d d d
Ec Pr 2 Ec Pr

d dd

d d d
Ec Pr 2 Ec Pr

d dd

    
              

                   

 

 

u u u u u u d d

u u u d d

 

 

   
 

  
 

 (46) 

     

     

2 42

3 0 1 1 0 1 1 0 1 12

0 0

2 42

0 1 0 1 0 12

0 0

d d d
EcPr 2 EcPr

d dd

d d d
EcPr 2 EcPr

d dd

    
                 

                      

 

 

u u u u u u u u u d d

u u u u u u d d

 

 

   
 

  
 

 

  (47) 

Hence, 

 3 2
1

1 1

6 2
  u d c   (48) 

 

 

 

3 7 2 6 2 2 5

2 4 4 2 2 3
2

2 2

1 1 1 3 3

28 4 5 2 2

1 1 1
4 2 EcPr 3 6

4 3 3 2

1
6

2

d cd bd c d c d

d
u bcd bd c c b b d bc

b c c

      

      

 

        
  

                  
    

 
 

 

 

  (49) 

 4 2
1 Ec Pr  b    (50) 
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 

  

 

 

4 10 3 9
2 2 2 2 8

3 2 2 7

2
2 2 2 2 2 6

2

2 2 2

Ec Pr Ec Pr 1 1
Ec Pr

720 72 28 2

1 1 1
Ec Pr Ec Pr 2

7 24 3

1 1 2 1
Ec Pr Ec Pr 4

6 4 5 2

1 1 1 1
Ec Pr Ec Pr Ec Pr 2 4

5 4 4 2

       
 

       
 

         
  

     

d cd
bd c d c d

d bcd bd c cd

cd b d bc d bd c

bd c d c d b cd

   
 

 

 


   

    

2 5

2 2 2 2 2 4

3 2 2 3 4 2

1 2 1 2
Ec Pr Ec Pr Ec Pr 2 4

4 3 3 3

1 1 1
4 Ec Pr Ec Pr Ec Pr Ec Pr Ec Pr

3 2 2

 
 

   
 

    

 
 
 
 
 
 
 
 
 
 
 
 
 

     


 
  
 



      
 

bc bd c

bcd bd c c b bd c b c

b c b d bc b b c



 

  

 

  (51) 

For Pr Ec 1,    the values of the constants becomes: 40.24112 10 ,a    

1 40.83335 10 ,  0.48238 10 ,  0.500000b c d        . 

5. Results and discussion 

In this study, the heat transfer analysis of natural convective non-Newtonian fluid 

flow between two vertically infinite parallel plates has been investigated for veloc-

ity and temperature profiles. The governing equation, which is a pair of coupled 

nonlinear ordinary differential equation was solved analytically by using the homo-

topy perturbation method (HPM) and Daftardar-Gejiji & Jafari Method (DJM).  

The results are validated by a numerical solution done with the “Numerical Solution 

of Differential Equations” package “NDSolveValue” in Mathematica 10.0. and 

presented in Table 1. The error analysis carried out showed that an accepted error 

of less than 3%  was observed in the differences of the solutions between the results 

obtained from the homotopy perturbation method, the Daftardar-Gejiji & Jafari 

Method (DJM) and the numerical method for both velocity and temperature profiles. 

The homotopy perturbation method can be an efficient tool for predicting the profiles 

of nonlinear heat transfer of natural convection of non-Newtonian fluid between 

two infinite flat plate. 

The effects of different parameters such as the Eckert number Ec, the Prandtl 

number Pr and the non-Newtonian fluid viscosity parameter δ are demonstrated  

in the figures which follow. In Figures 2a and 2b, the effects of the Eckert number 

Ec on fluid velocity and temperature are investigated and the results are presented. 

It is observed that the fluid velocity exhibits a delayed flow profile around the plate 

region while the temperature decreases significantly with increasing Ec. Further-
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more, the results show that the Ec number has minimal effect on the fluid velocity 

and temperature variations. Figures 3a and 3b show the results of non-dimensional 

fluid velocity and temperature for various Prandtl number Pr, and the effect of Pr is 

investigated. Similar results as observed in the effect of Ec number (Fig. 2a and 2b) 

are also observed for Pr. The same results were obtained by Ahmed et al. [20].  

Table 1. Comparison of HPM, DJM and numerical method results 

The results of HPM, DJM and Numerical methods for u(ξ) for 

Pr = 1, Ec = 1, δ = 1 

ξ HPM DJM NUM Error of HPM Error of DJM 

–1.00 0.000000 0.00000 0.00000 0.000000 0.000000 

–0.80 0.023309 0.02331 0.02337 –0.000061 –0.000060 

–0.60 0.031366 0.03142 0.03142 –0.000054 0.000000 

–0.40 0.027481 0.02753 0.02753 –0.000049 0.000000 

–0.20 0.015682 0.01571 0.01571 –0.000028 0.000000 

0.00 0.000000 0.00001 0.00001 –0.000010 0.000000 

0.20 –0.015682 –0.01570 –0.01570 0.000018 0.000000 

0.40 –0.027481 –0.02751 –0.02751 0.000029 0.000000 

0.60 –0.031366 –0.03141 –0.03141 0.000044 0.000000 

0.80 –0.023309 –0.02337 –0.02337 0.000061 0.000000 

1.00 0.000000 0.00000 0.00000 0.000000 0.000000 

 
In Figures 4a and 4b, the effects of the non-Newtonian fluid viscosity parameter 

δ on temperature and fluid velocity are investigated and presented. These figures 

show that δ has no effect on the varying temperatures but the fluid velocity  

decreases significantly. This same observation was made by Hatami and Ganji [3]. 

 
a) b) 

      

Fig. 2. The fluid velocity U(ξ) (a) and temperature φ(ξ) (b) for various Ec at Pr = δ = 1 
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a) b) 

      

Fig. 3. The fluid velocity U(ξ) (a) and temperature φ(ξ) (b) for various Pr at Ec = δ = 1 

a) b) 

      

Fig. 4. The fluid velocity U(ξ) (a) and temperature φ(ξ) (b) for various δ at Ec = Pr = 1 

Conclusions 

In this study, we have applied the homotopy perturbation method and the 

Daftardar-Gejiji & Jafari Method (DJM) to obtain an analytical solution to the 

problem of heat transfer on non-Newtonian natural convective fluid flow between 

two vertically infinite parallel plates. The analytical solutions were validated by the 

numerical method, and an excellent agreement was observed between the methods 

of solution so the homotopy perturbation method and the Daftardar-Gejiji & Jafari 

Method (DJM) is very useful in obtaining analytical solutions to problems in engi-

neering, science and other areas of application. The effects of the Eckert number, 

the Prandtl number and the non-Newtonian fluid viscosity parameter on tempera-

ture and velocity were investigated. Hence, it can be concluded that by increasing 

the Eckert number and the Prandtl number, there will be an increase in both  

temperature and fluid flow velocity.  
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Nomenclature 

:  stress tensor 

�  constant fluid density 

fb body force 

T temperature 

K thermal conductivity 

V velocity field 

��  specific heat at constant pressure 

L gradient of velocity field 

p pressure 

�  coefficient of viscosity 

��  material constants 

�� Erickson tensors 

Ec Eckert number 

Pr Prandtl number 

;  non-Newtonian viscosity 

<�(� non-dimensional velocity field 

$�(� non-dimensional temperature field 

(  non-dimensionlal x cordinate 
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