PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deformed solitons of a typical set of (2+1)-dimensional complex modified Korteweg–de Vries equations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Deformed soliton solutions are studied in a typical set of (2+1)-dimensional complex modified Korteweg–de Vries (cmKdV) equations. Through constructing the determinant form of the n-fold Darboux transformation for these (2+1)-dimensional cmKdV equations, we obtain general order-n deformed soliton solutions using zero seeds. With no loss of generality, we focus on order-1 and order-2 deformed solitons. Three types of order-1 deformed solitons, namely, the polynomial type, the trigonometric type, and the hyperbolic type, are derived. Meanwhile, their dynamical behaviors, including amplitude, velocity, direction, periodicity, and symmetry, are also investigated in detail. In particular, the formulas of |q[1]| and trajectories are provided analytically, which are involved by an arbitrary smooth function f(y + 4λ2t). For order-2 cases, we obtain the general analytical expressions of deformed solitons. Two typical solitons, possessing different properties in temporal symmetry, are discussed.
Rocznik
Strony
337--350
Opis fizyczny
Bibliogr. 43 poz., wykr.
Twórcy
autor
  • School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, PR China
autor
  • School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, PR China
autor
  • Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
Bibliografia
  • [1] Ablowitz, M.J., Ablowitz, M.A., Clarkson, P.A. and Clarkson, P.A. (1991). Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge.
  • [2] Biondini, G. (2007). Line soliton interactions of the Kadomtsev–Petviashvili equation, Physical Review Letters 99(6): 064103.
  • [3] Dai, C.Q., Zhu, S.Q., Wang, L.L. and Zhang, J.F. (2010). Exact spatial similaritons for the generalized (2+1)-dimensional nonlinear Schrödinger equation with distributed coefficients, EPL (Europhysics Letters) 92(2): 24005.
  • [4] El-Tantawy, S.A. and Moslem, W.M. (2014). Nonlinear structures of the Korteweg–de Vries and modified Korteweg–de Vries equations in non-Maxwellian electron-positron-ion plasma: Solitons collision and rogue waves, Physics of Plasmas 21(5): 052112.
  • [5] Erbay, H.A. (1998). Nonlinear transverse waves in a generalized elastic solid and the complex modified Korteweg–de Vries equation, Physica Scripta 58(1): 9.
  • [6] Erbay, S. and Şuhubi, E.S. (1989). Nonlinear wave propagation in micropolar media. II: Special cases, solitary waves and Painlevé analysis, International Journal of Engineering Science 27(8): 915–919.
  • [7] Gorbacheva, O.B. and Ostrovsky, L.A. (1983). Nonlinear vector waves in a mechanical model of a molecular chain, Physica D: Nonlinear Phenomena 8(1–2): 223–228.
  • [8] He, J.S., Tao, Y.S., Porsezian, K. and Fokas, A.S. (2013). Rogue wave management in an inhomogeneous nonlinear fibre with higher order effects, Journal of Nonlinear Mathematical Physics 20(3): 407–419.
  • [9] He, J.S., Wang, L.H., Li, L.J., Porsezian, K. and Erdélyi, R. (2014). Few-cycle optical rogue waves: Complex modified Korteweg–de Vries equation, Physical Review E 89(6): 062917.
  • [10] Hirota, R. (1972). Exact solution of the modified Korteweg–de Vries equation for multiple collisions of solitons, Journal of the Physical Society of Japan 33(5): 1456–1458.
  • [11] Kao, C.Y. and Kodama, Y. (2012). Numerical study of the KP equation for non-periodic waves, Mathematics and Computers in Simulation 82(7): 1185–1218.
  • [12] Karney, C.F.F., Sen, A. and Chu, F.Y.F. (1979). Nonlinear evolution of lower hybrid waves, The Physics of Fluids 22(5): 940–952.
  • [13] Khater, A.H., El-Kalaawy, O.H. and Callebaut, D.K. (1998). Bäcklund transformations and exact solutions for Alfvén solitons in a relativistic electron–positron plasma, Physica Scripta 58(6): 545.
  • [14] Kodama, Y., Oikawa, M. and Tsuji, H. (2009). Soliton solutions of the KP equation with V-shape initial waves, Journal of Physics A: Mathematical and Theoretical 42(31): 312001.
  • [15] Komatsu, T.S. and Sasa, S.-i. (1995). Kink soliton characterizing traffic congestion, Physical Review E 52(5): 5574.
  • [16] Korteweg, D.J. and de Vries, G. (1895). XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 39(240): 422.
  • [17] Kundu, A. (2008). Exact accelerating solitons in nonholonomic deformation of the KdV equation with a two-fold integrable hierarchy, Journal of Physics A: Mathematical and Theoretical 41(49): 495201.
  • [18] Li, Z.J., Hai, W.H. and Deng, Y. (2013). Nonautonomous deformed solitons in a Bose–Einstein condensate, Chinese Physics B 22(9): 090505.
  • [19] Liu, X.T., Yong, X.L., Huang, Y.H., Yu, R. and Gao, J.W. (2015). Deformed soliton, breather and rogue wave solutions of an inhomogeneous nonlinear Hirota equation, Communications min Nonlinear Science and Numerical Simulation 29(1–3): 257–266.
  • [20] Lonngren, K. E. (1998). Ion acoustic soliton experiments in a plasma, Optical and Quantum Electronics 30(7–10): 615–630.
  • [21] Lü, X., Zhu, H. W. Meng, X.H.Y.Z.C. and Tian, B. (2007). Soliton solutions and a Bäcklund transformation for a generalized nonlinear Schrödinger equation with variable coefficients from optical fiber communications, Journal of Mathematical Analysis and Applications 336(2): 1305–1315.
  • [22] Mollenauer, L.F., Stolen, R.H. and Gordon, J.P. (1980). Experimental observation of picosecond pulse narrowing and solitons in optical fibers, Physical Review Letters 45(13): 1095.
  • [23] Myrzakulov, R., Mamyrbekova, G., Nugmanova, G. and Lakshmanan, M. (2015). Integrable (2+1)-dimensional spin models with self-consistent potentials, Symmetry 7(3): 1352–1375.
  • [24] Osman, M.S. and Wazwaz, A.M. (2018). An efficient algorithm to construct multi-soliton rational solutions of the (2+1)-dimensional KdV equation with variable coefficients, Applied Mathematics and Computation 321: 282–289.
  • [25] Pal, R., Kaur, H., Raju, T.S. and Kumar, C. (2017). Periodic and rational solutions of variable-coefficient modified Korteweg–de Vries equation, Nonlinear Dynamics 89(1): 617–622.
  • [26] Porsezian, K., Seenuvasakumaran, P. and Ganapathy, R. (2006). Optical solitons in some deformed MB and NLS–MB equations, Physics Letters A 348(3–6): 233–243.
  • [27] Russell, S.J. (1844). Report on waves, 14th Meeting of the British Association for the Advancement of Science, York, UK, pp. 311–390.
  • [28] Sun, Z.Y. Gao, Y.T.L.Y. and Yu, X. (2011). Soliton management for a variable-coefficient modified Korteweg–de Vries equation, Physical Review E 84(2): 026606.
  • [29] Tao, Y.S., He, J.S. and Porsezian, K. (2013). Deformed soliton, breather, and rogue wave solutions of an inhomogeneous nonlinear Schrödinger equation, Chinese Physics B 22(7): 074210.
  • [30] Wadati, M. (1972). The exact solution of the modified Korteweg–de Vries equation, Journal of the Physical Society of Japan 32(6): 1681–1681.
  • [31] Wadati, M. (2008). Construction of parity-time symmetric potential through the soliton theory, Journal of the Physical Society of Japan 77(7): 074005.
  • [32] Wadati, M. and Ohkuma, K. (1982). Multiple-pole solutions of the modified Korteweg–de Vries equation, Journal of the Physical Society of Japan 51(6): 2029–2035.
  • [33] Wu, H.X., Zeng, Y.B. and Fan, T.Y. (2008). Complexitons of the modified KdV equation by Darboux transformation, Applied Mathematics and Computation 196(2): 501–510.
  • [34] Xing, Q.X., Wang, L.H., Mihalache, D., Porsezian, K. and He, J.S. (2017a). Construction of rational solutions of the real modified Korteweg–de Vries equation from its periodic solutions, Chaos: An Interdisciplinary Journal of Nonlinear Science 27(5): 053102.
  • [35] Xing, Q.X., Wu, Z.W., Mihalache, D. and He, J.S. (2017b). Smooth positon solutions of the focusing modified Korteweg–de Vries equation, Nonlinear Dynamics 89(4): 2299–2310.
  • [36] Xu, T.X., Qiao, Z.J. and Li, Y. (2011). Darboux transformation and shock solitons for complex mKdV equation, Pacific Journal of Applied Mathematics 3(1/2): 137.
  • [37] Yan, J.L. and Zheng, L.H. (2017). Conservative finite volume element schemes for the complex modified Korteweg–de Vries equation, International Journal of Applied Mathematics and Computer Science 27(3): 515–525. DOI:10.1515/amcs-2017-0036.
  • [38] Yesmakhanova, K., Shaikhova, G., Bekova, G. and Myrzakulov, R. (2017). Darboux transformation and soliton solution for the (2+1)-dimensional complex modified Korteweg–de Vries equations, Journal of Physics: Conference Series 936: 012045.
  • [39] Zabusky, N.J. and Kruskal, M.D. (1965). Interaction of solitons in a collisionless plasma and the recurrence of initial states, Physical Review Letters 15(6): 240.
  • [40] Zha, Q.L. and Li, Z.B. (2008). Darboux transformation and multi-solitons for complex mKdV equation, Chinese Physics Letters 25(1): 8.
  • [41] Zhang, H.Q. Tian, B.L.L.L. and Xue, Y.S. (2009). Darboux transformation and soliton solutions for the (2+1)-dimensional nonlinear Schrödinger hierarchy with symbolic computation, Physica A: Statistical Mechanics and Its Applications 388(1): 9–20.
  • [42] Zhang, Y.S., Guo, L.J., Chabchoub, A. and He, J.S. (2017). Higher-order rogue wave dynamics for a derivative nonlinear Schrödinger equation, Romanian Journal of Physics 62: 102.
  • [43] Zhang, Y.S., Guo, L.J., He, J.S. and Zhou, Z.X. (2015). Darboux transformation of the second-type derivative nonlinear Schrödinger equation, Letters in Mathematical Physics 105(6): 853–891.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bbd5d689-1029-42b2-b67a-bc721ba4f0be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.