Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Języki publikacji
Abstrakty
The article examines the application of infrared heating systems in industrial premises to maintain a comfortable temperature while minimizing energy consumption. The authors have proposed a physical model for a production room utilizing film infrared heaters to regulate the temperature in the working area. This model incorporates heat transfer processes and thermal balances within the room, taking into account factors such as human heat release, convective heat transfer, and infrared radiation. Heat balance equations for air, the human body and external surfaces have been derived to analyze the heat distribution and energy efficiency of the infrared heating system. The study underscores the significance of innovative heating technologies in enhancing thermal comfort and energy efficiency in industrial buildings.
Rocznik
Tom
Strony
129--142
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- University of Birmingham, United Kingdom
autor
- Lviv Polytechnic National University, Ukraine
autor
- Lviv Polytechnic National University, Ukraine
autor
- Czestochowa University of Technology, Poland
autor
- Lviv Polytechnic National University, Ukraine
Bibliografia
- 1. Abaza, H., Shenawa, A. & Semmelink, S. (2023) Using Radiant Heating System to Prevent Bridge Freezing. ASME 2023 Heat Transfer Summer Conference, V001T12A001. Washington, DC, American Society of Mechanical Engineers, DOI: 10.1115/HT2023-105739.
- 2. Arslanoglu, N. & Yigit, A. (2016) Experimental and theoretical investigation of the effect of radiation heat flux on human thermal comfort. Energy and Buildings, 113, 23-29, DOI: 10.1016/j.enbuild.2015. 12.039.
- 3. Aryal, A. & Becerik-Gerber, B. (2020) Thermal comfort modelling when personalized comfort systems are in use: Comparison of sensing and learning methods. Building and Environment, 185, 107316, DOI: 10.1016/j.buildenv.2020.107316.
- 4. Biermann, S., Magi, A., Sachse, P., Hoffmann, M., Wedrich, K., Müller, L., Koppert, R., Ortlepp, T. & Baldauf, J. (2020) Advanced broadband MEMS infrared emitter based on high-temperature-resistant nanostructured surfaces and packaging solutions for harsh environments. Proceedings Volume 11279 Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XIII, eds. L.P. Sadwick & T. Yang. San Francisco, SPIE, DOI: 10.1117/12.2545119.
- 5. Bulhakov, O., Litvinov, O., Fedorchuk, S., Ivakhnov, A., Maslak, M. & Kulapin, O. (2023) Evaluation of the energy efficiency of the infrared long-wave heating system in various applications. 2023 IEEE 4th KhPI Week on Advanced Technology. Kharkiv, IEEE, DOI: 10.1109/KhPIWeek61412.2023.103 12845.
- 6. Dudkiewicz, E., Fidorów-Kaprawy, N. & Szałański, P. (2022). Environmental benefits and energy savings from gas radiant heaters’ flue-gas heat recovery. Sustainability, 14(13), 8013, DOI: 10.3390/ su14138013.
- 7. Dzelme, V., Telicko, J. & Jakovics, A. (2022). Thermal comfort in indoor spaces with radiant capillary heaters. Environmental and Climate Technologies, 26(1), 708-719, DOI: 10.2478/rtuect-2022-0054
- 8. Fu, S., Pan, Y., Wan, X., Wang, J., Jia, X., Luo, X. & Ma, H. (2024) Numerical simulation of heat transfer characteristics of capillary radiant heating floor. KSCE Journal of Civil Engineering, 28(2), 546-556, DOI: 10.1007/s12205-024-1518-1.
- 9. Gao, X., Von Boecklin, M., Ermanoski, I. & Stechel, E.B. (2021) Low-cost radiant heater for rapid response, high-temperature heating. Frontiers in Energy Research, 9, 652203, DOI: 10.3389/fenrg. 2021.652203.
- 10. Kavga, A., Alexopoulos, G., Bontozoglou, V., Pantelakis, S. & Panidis, T. (2012) Experimental investigation of the energy needs for a conventionally and an infrared-heated greenhouse. Advances in Mechanical Engineering, 4, 789515, DOI: 10.1155/2012/789515.
- 11. Kim, S.H., Cho, E., Kim, M. & Lee, S.-J. (2021) High‐performance rollable polymer/metal/polymer thin‐film heater and heat mirror. Plasma Processes and Polymers, 18(12), 2100098, DOI: 10.1002/ ppap.202100098.
- 12. Linhoss, J.E., Purswell, J.L., Davis, J.D. & Fan, Z. (2017) Comparing radiant heater performance using spatial modeling. Applied Engineering in Agriculture, 33(3), 395-405, DOI: 10.13031/aea.12108.
- 13. Lu, L., Wen, J., Chen, J. & Liu, X. (2024). Study on material parameter optimization for improving the heat transfer performance of lightweight floor radiant heating. Journal of Building Engineering, 86, 108698, DOI: 10.1016/j.jobe.2024.108698.
- 14. Maldonado, L., Shi, C., Vian, C. & Ostanek J. (2020) Development and Evaluation of an Infrared Heating System for Die Preheating. Vol. 11: Heat Transfer and Thermal Engineering, V011T11A050. Virtual, Online: American Society of Mechanical Engineers, DOI: 10.1115/IMECE2020-23744.
- 15. Radhi, S.S., Al-Khafaji, Z.S. & Falah., M.W. (2022) Sustainable heating system by infrared radiators. Heritage and Sustainable Development, 4(1), 42-52, DOI: 10.37868/sei.v4i1.id82.
- 16. Römer, M., Bergers, J., Gabriel, F. & Dröder, K. (2022) Temperature control for automated tape laying with infrared heaters based on reinforcement learning. Machines, 10(3), 164, DOI: 10.3390/machines 10030164.
- 17. Ryms, M. & Lewandowski, W.M. (2021) Evaluating the influence of radiative heat flux on convective heat transfer from a vertical plate in air using an improved heating plate. International Journal of Heat and Mass Transfer, 173, 121232, DOI: 10.1016/j.ijheatmasstransfer.2021.121232.
- 18. Samek, L., De Maeyer-Worobiec, A., Spolnik, Z., Bencs, L., Kontozova, V., Bratasz, Ł., Kozłowski, R., Van Grieken, R. (2007) The impact of electric overhead radiant heating on the indoor environment of historic churches. Journal of Cultural Heritage, 8(4), 361-369, DOI: 10.1016/j.culher.2007.03.006.
- 19. Schiff, E.A. (2024) A radiant heating experiment and analogy with earth’s surface temperature. The Physics Teacher, 62(1), 50-52, DOI: 10.1119/5.0131687.
- 20. Shatskov, A.O. (2021) Determining temperature of adiabatic surfaces in rooms with radiant heating. Thermal Engineering, 68(9), 717-722, DOI: 10.1134/S0040601521090081.
- 21. Spodyniuk, N., Voznyak, O., Savchenko, O., Sukholova, J. & Kasynets., M. (2022a) Optimization of heating efficiency of buildings above underground coal mines by infrared heaters. Scientific Bulletin of National Mining University, 3, 100-106, DOI: 10.33271/nvngu/2022-3/100.
- 22. Spodyniuk, N., Voznyak, O., Savchenko, O., Dovbush, O., Kasynets, M. & Datsko, O. (2022b) Analysis of premise infrared heating and ventilation with an exhaust outlet and flat decking air flow. Diagnostyka, 23(2), 1-10, DOI: 10.29354/diag/149797
- 23. Tan, J., Liu, J., Liu, W., Yu, B. & Zhang, J. (2022) Performance on heating human body of an optimised radiant-convective combined personal electric heater. Building and Environment, 214, 108882, DOI: 10.1016/j.buildenv.2022.108882.
- 24. Tesfaye, K., Silambarasan, M., Manova, L.M., Balasubramanian, E. & Praveen, A.S. (2021) Experimental and numerical study on temperature distribution of infrared heater used for curing solid propellant slurries. In: Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering, eds. N. Gascoin & E. Balasubramanian. Lecture Notes in Mechanical Engineering. Singapore: Springer Singapore, 73-79, DOI: 10.1007/978-981-15-6619-6_8.
- 25. Tian, T., Wei, X., Elhassan, A., Yu, J., Li, Z. & Ding B. (2021) Highly flexible, efficient, and wearable infrared radiation heating carbon fabric. Chemical Engineering Journal, 417, 128114, DOI: 10.1016/ j.cej.2020.128114.
- 26. Trokhaniak, V., Spodyniuk, N., Antypov, I., Shelimanova, O., Tarasenko, S., Mishchenko A. (2021) Experimental research and CFD modeling of modular poultry breeding. INMATEH Agricultural Engineering, 65, 3, 303-311, DOI: 10.35633/inmateh-65-32.
- 27. Vestfal, P., Černeckienė, J. & Šeduikytė, L. (2023) Analysis of the impact of high-space building heating system solutions on building energy efficiency. Journal of Sustainable Architecture and Civil Engineering, 33(2), 113-121, DOI: 10.5755/j01.sace.33.2.34305
- 28. Voznyak, O., Spodyniuk, N., Savchenko, O., Sukholova, I. & Kasynets, M. (2021) Enhancing energetic and economic efficiency of heating coal mines by infrared heaters. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 104-109, DOI: 10.33271/nvngu/2021-2/104
- 29. Werner-Juszczuk, A.J. & Siuta-Olcha, A. (2024) Assessment of the validity of using a radiant panel in the low-height floor heating. Building Services Engineering Research and Technology, 45(2), 203-212, DOI: 10.1177/01436244231226304.
- 30. Wu, F., Alkandari, S., Ma, J., Dhillon, P., Liu, H., Braun, J.E., Karava, P., Ziviani, D. & Horton, D.T. (2024) Wall-embedded micro heat pump for radiant heating in buildings: evaluation of energy and thermal comfort performance. Energy and Buildings, 310, 114075, DOI: 10.1016/j.enbuild.2024.114075.
- 31. Xu, Ch. & Shao, S. (2024) Performances investigations on thermal characteristics of a novel direct-condensation convective-radiant heating panel: An experimental and numerical study. Applied Thermal Engineering, 244, 122705, DOI: 10.1016/j.applthermaleng.2024.122705.
Identyfikator YADDA
bwmeta1.element.baztech-bbd4bc25-e08a-4dc8-bda1-61261b1bd9d7