PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative physiological aspects of plasma hemostasis of some commercial fish species

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The hemostasis system is designed to ensure the integrity of the body’s internal environment, stop bleeding, and maintain a liquid state of blood in the vascular channel. Modern biological and veterinary science presents highly fragmented and scarce data containing clinical and diagnostic clotting characteristics in different fish species. An essential point emphasising the practical component of such studies is spontaneous thrombus formation in fish farming described in the literature. The present research is devoted to the study of the functional state of plasma hemostasis in some ray-finned commercial fishes: phylogenetically more ancient cartilaginous ganoids - sturgeon Acipenser baerii and hybrid of sterlet A. ruthenus and starred sturgeon A. stellatus, as well as bony fishes - carp Cyprinus carpio and tilapia Oreochromis niloticus. It should be noted that the current study was performed at the aquaculture development center “AquaBioCenter” of VSDFA from 2015 to 2020. Species-specific features of clotting were revealed: activation by common and extrinsic pathways, characterised by thrombin time (TT), prothrombin time (PT), and fibrinogen concentration, is several times faster in cartilaginous ganoids than in both bony fish species; hemostasis with activation of the intrinsic pathway, characterised by activated partial thromboplastin time (APTT), is faster in hybrids and tilapias, in contrast to carps and sturgeons. Content of soluble fibrin monomer complexes (SFMC) in all fish was higher than in dogs and humans but lower than in cattle. The highest amount of SFMC was detected in carps, the lowest - in cartilaginous ganoids.
Wydawca
Rocznik
Tom
Strony
239--242
Opis fizyczny
Bibliogr. 20 poz., tab., wykr.
Twórcy
  • Al-Nisour University College, College of Science, Nisour Square Tunnel 8934+85M, Baghdad, Iraq
  • Al-Manara College For Medical Sciences, Department of Dentistry, Misan, Iraq
  • Altoosi University College, College of Nursing, Najaf, Iraq
  • Islamic University of Najaf, Najaf, Iraq
Bibliografia
  • BENUN SUTTON F., WILSON A.B. 2019. Where are all the moms? External fertilization predicts the rise of male parental care in bony fishes. Evolution. Vol. 73(12) p. 2451–2460. DOI 10.1111/evo.13846.
  • BLANCO-ABAD V., NOIA M., VALLE A., FONTENLA F., FOLGUEIRA I., DE FELIPE A.P., ..., LAMAS J. 2018. The coagulation system helps control infection caused by the ciliate parasite Philasterides dicentrarchi in the turbot Scophthalmus maximus (L.). Developmental & Comparative Immunology. Vol. 87 p. 147–156. DOI 10.1016/j.dci.2018.06.001.
  • BONAR R.A., LIPPI G., FAVALORO E.J. 2017. Overview of hemostasis and thrombosis and contribution of laboratory testing to diagnosis and management of hemostasis and thrombosis disorders. In: Hemostasis and thrombosis. Methods and protocols. Eds. E.J. Favaloro, G. Lippi. Vol. 1646. New York, NY. Humana Press p. 3–27. DOI 10.1007/978-1-4939-7196-1_1.
  • DOOLITTLE R.F., SURGENOR D.M. 1962. Blood coagulation in fish. American Journal of Physiology-Legacy Content. Vol. 203(5) p. 964–970. DOI 10.1152/ajplegacy.1962.203.5.964.
  • DOUDA K., VELÍŠEK J., KOLÁŘOVÁ J., RYLKOVÁ K., SLAVÍK O., HORKÝ P., LANGROVÁ I. 2017. Direct impact of invasive bivalve (Sinanodonta woodiana) parasitism on freshwater fish physiology: Evidence and implications. Biological Invasions. Vol. 19(3) p. 989–999. 10.1007/s10530-016-1319-7.
  • DUBOVA O., FESHCHENKO D., BAKHUR T., ZGHOZINSKA O., ANTIPOV A., RUBLENKO S., ..., SHAHANENKO V. 2020. Disseminated intravascular coagulation syndrome as a complication in acute spontaneous canine babesiosis. DOI 10.2478/macvetrev-2020-0027.
  • JAGADEESWARAN P., GREGORY M., DAY K., CYKOWSKI M., THATTALIYATH B. 2005. Zebrafish: A genetic model for hemostasis and thrombosis. Journal of Thrombosis and Haemostasis. Vol. 3(1) p. 46–53. DOI 10.1111/j.1538-7836.2004.00999.x.
  • KAWATSU H. 1986. Clotting time of common carp blood. Bulletin of the Japanese Society of Scientific Fisheries. Vol. 52(4) p. 591–595. DOI 10.2331/suisan.52.591.
  • LANGDELL R.D., BRYAN F.T., GIBSON J R W.S. 1965. Coagulation of catfish blood. Proceedings of the Society for Experimental Biology and Medicine. Vol. 118(2) p. 439–441. DOI 10.3181%2F00379727-118-29869.
  • LEWIS J.H. 1996. Comparative hemostasis. In: Comparative hemostasis in vertebrates. Boston, MA. Springer p. 325–359. DOI 10.1007/978-1-4757-9768-8_27.
  • LITTLE A.G., LOUGHLAND I., SEEBACHER F. 2020. What do warming waters mean for fish physiology and fisheries? Journal of Fish Biology. Vol. 97(2) p. 328–340. DOI 10.1111/jfb.14402.
  • OBETA M.C., OKAFOR U.P., NWANKWO C.F. 2019. Influence of discharged industrial effluents on the parameters of surface water in Onitsha urban area, southeastern Nigeria. Journal of Water and Land Development. No. 42 p. 136–142. DOI 10.2478/jwld-2019-0054.
  • PEREZ-RUZAFA A., PEREZ-MARCOS M., MARCOS C. 2018. From fish physiology to ecosystems management: Keys for moving through biological levels of organization in detecting environmental changes and anticipate their consequences. Ecological Indicators. Vol. 90 p. 334–345. DOI 10.1016/j.ecolind.2018.03.019.
  • RAUCH A., LABREUCHE J., LASSALLE F., GOUTAY J., CAPLAN M., CHARBONNIER L., ..., SUSEN S. 2020. Coagulation biomarkers are independent predictors of increased oxygen requirements in COVID-19. Journal of Thrombosis and Haemostasis. Vol. 18(11) p. 2942–2953. DOI 10.1111/jth.15067.
  • RUIS M.A., BAYNE C.J. 1997. Effects of acute stress on blood clotting and yeast killing by phagocytes of rainbow trout. Journal of Aquatic Animal Health. Vol. 9(3) p. 190–195.
  • SCHMID S., FENT K. 2020. 17β-Estradiol and the glucocorticoid clobetasol propionate affect the blood coagulation cascade in zebrafish. Environmental Pollution. Vol. 259, 113808. DOI 10.1016/j.envpol.2019.113808.
  • SHEEHAN J., TEMPLER M., GREGORY M., HANUMANTHAIAH R., TROYER D., PHAN T., ..., JAGADEESWARAN P. 2001. Demonstration of the extrinsic coagulation pathway in teleostei: Identification of zebrafish coagulation factor VII. Proceedings of the National Academy of Sciences. Vol. 98(15) p. 8768–8773. DOI 10.1073/pnas.131109398.
  • SMILEY S.T., KING J.A., HANCOCK W.W. 2001. Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. The Journal of Immunology. Vol. 167(5) p. 2887–2894. DOI 10.4049/jimmunol.167.5.2887.
  • SMIT G.L., SCHOONBEE H.J. 1988. Blood coagulation factors in the freshwater fish Oreochromis mossambicus. Journal of Fish Biology. Vol. 32(5) p. 673–677. DOI 10.1111/j.1095-8649.1988.tb05407.x.
  • SMITH A.C. 1980. Formation of lethal blood clots in fishes. Journal of Fish Biology. Vol. 16(1) p. 1–4. DOI 10.1111/j.1095-8649.1980.tb03682.x.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bbcfad37-56c8-49f1-bffd-673bf6bb14e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.