PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Polyaniline: tin oxide polymeric nanocomposite films. An electrical and dielectric study

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A conducting nanocomposite film of 60 nm nano-SnO2-polyaniline (PANI) and polyvinyl alcohol (PVA) has been synthesized and analyzed in terms of AC conductivity and dielectric behavior. The conducting polymer nanocomposite of PANI/60 nm (SnO2) and polyvinyl alcohol (PVA) has been prepared via in situ polymerization technique. The morphology of the nanocomposite film has been studied by SEM. The film has been characterized in terms of DC conductivity. The dielectric behavior and AC conductivity of the nanocomposite film have been investigated in the frequency range of 2 Hz to 90 KHz. The film has high dielectric constant which may be correlated with polarization. It has been observed that both dielectric loss and dielectric constant decrease with an increase in frequency.
Wydawca
Rocznik
Strony
711--716
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
autor
  • Department of Mechanical Engineering, A.N.A college of engineering and management studies, Bareilly, India
autor
  • Department of Physics and Materials Science, Jaypee University of Information Technology, Waknaghat, Solan, H.P. (173234) India
autor
  • Department of Physics and Materials Science, Jaypee University of Information Technology, Waknaghat, Solan, H.P. (173234) India
Bibliografia
  • [1] Gandla D., Sarkar S., Ghanti E., Ghosh S., Electrochim. Acta, 248 (2017), 486.
  • [2] Duan X., Deng J., Wang X., Liu P., Mater. Design, 129 (2017), 135.
  • [3] Kumar R.M., Ryman S., Tareq O., Douglas A.B., Freund M.S., Sensor. Actuat. B-Chem., 202 (2014), 600.
  • [4] Ling Q.D., Liaw D.J., Zhu C., Chan D.S.H., Kang E.T., Neoh K.G., Prog. Polym. Sci., 33 (2008), 917.
  • [5] Zhong A.H., Xie Y.L., Wang Y.X., Mo L.P., Yang Y.Y., Zhang Z.Y., Mater. Chem. Phys., 114 (2009), 990.
  • [6] Yang X., Li B., Wang H., Hou B., Prog. Org. Coat., 69 (2010), 267.
  • [7] Yan H., Yu G., Yunfeng C., Caiyun W., Gordon W.G., J. Energy Chem., 27 (2018), 57.
  • [8] Mostafaei A., Ashkan Z., Prog. Nat. Sci.-Mater., 22 (2012), 273.
  • [9] Modak P., Kondawar S.B., Nandanwar D.V., Procedia Mater. Sci., 10 (2015), 588.
  • [10] Sen T., Mishra S., Shimpi N.G., RSC Adv., 48 (2016), 42196.
  • [11] Patil S.S., Harpale K.V., Koiry S.P., Patil K.R., Aswal D.K., More M.A., J. Appl. Polym. Sci., 132 (2015), 41401.
  • [12] Nasirian S., Moghaddam H.M., Int. J. Hydrogen Energ., 39 (2014), 630.
  • [13] Mostafaei A., Zolriasatein A., Prog. Nat. Sci.-Mater., 22 (2012), 273.
  • [14] Khuspe G.D., Chougule M.A., Navale S.T., Pawar S.A., Patil V.B., Ceram. Int., 40 (2014), 4267.
  • [15] Jevremovic M., Zujovic Z., Stanisavljev D., Bowmaker G., Gizdavic-Nikolaidis M., Curr. Appl. Phys, 14 (2014), 1201.
  • [16] Fuke M.V., Kanitkar P., Kulkarni M., Kale B.B., Aiyer R.C., Talanta, 81 (2010), 320.
  • [17] Hermas A.A., Salam M.A., Al-Juaid S.S., Qusti A.H., Abdelaal M.Y., Prog. Org. Coat., 77 (2014), 403.
  • [18] Ashokan S., Ponnuswamy V., Jayamuruga P., Mat. Sci. Semicon. Proc., 30 (2015), 494.
  • [19] Jaymand M., Prog. Polym. Sci., 38 (2013), 1287.
  • [20] Gangopadhyay R., De A., Ghosh G., Synthetic Met., 123 (2001), 21.
  • [21] Radhakrishnan S., Sonawane N., Siju C.R., Prog. Org. Coat., 64 (2009), 383.
  • [22] Bober P., Stejskal J., Trchova M., Prokes J., Electrochim. Acta., 122 (2014), 259.
  • [23] Arora R., Mandal U., Sharma P., Srivastav A., Mater. Today, 4 (2017), 2733.
  • [24] Sun G., Qi F., Zhang S., Y Li., Wang Y., Cao J., Bala H., Wang X., Tiekun J.T., Zhang Z., J. Alloy. Compd., 617 (2014), 192.
  • [25] Kim H.M., Lee C.Y., Joo, J. Korean Phys. Soc., 36 (2000), 371.
  • [26] Ray S.S., Biswas B., Synthetic Met., 2000 (108), 231.
  • [27] Swarup B., Bhattacharya S., Phys. Lett. A, 39 (2017), 3424.
  • [28] Dutta K., De S.K., Mater. Lett., 61 (2007), 4967.
  • [29] Buneo P.R., Leite E.R., Oliveira M.M., Orlandi M.O., Longo E., Appl. Phys. Lett., 79 (2001), 48.
  • [30] He C., Xiao Y., Dong H., Liu Y., Zheng M., Xiao K., Liu X., Zhang H., Lei B., Electrochim. Acta, 142 (2014), 157.
  • [31] Dutta K., De S.K., Mater. Lett., 61 (2007), 4967.
  • [32] Bunde A., Dieterich W., J. Electroceram., 5 (2000), 81.
  • [33] Macappa T., Prasad A.M.V.N., Physica B, 404 (2009), 4168.
  • [34] Deshpande N.G., Gudage Y.G., Sharma R., Vyas J.C., Kim J.B., Lee Y.P., Sensor. Actuat. BChem., 138 (2009), 76.
  • [35] Kityk I.V., J. Non-Cryst. Solids, 292 (2001), 184.
  • [36] Wagner K.W., Dielektrischen E.D., Grund N.A., Vorstellungen M., Elektron. Elektrotech., 2 (1914), 371.
  • [37] Albuquerque J.E., Mattoso L.H.C., Balogh D.T., Faria R.M., Masters J.G., Mac-Diarmid A.G., Synthetic Met., 113 (2000), 19.
  • [38] Mostafaei A., Zolriasatein A., Prog. Nat. Sci.-Mater., 22 (2012), 273.
  • [39] Su S.J., Kuramoto N., Synthetic Met., 114 (2000), 147.
  • [40] Khuspe G.D., Navale S.T., Chougule M.A., Sen S., Agawane G.L., Kim J.H., Patil V.B., Synthetic Met., 178 (2013), 1.
  • [41] Dutta P., Biswas S., Ghosh M., De S.K., Chatterjee S., Synthetic Met., 122 (2001), 455.
  • [42] Li X., Wang G., Li X., Lu D., Appl. Surf. Sci., 229 (2004), 395.
  • [43] Idrees M., Razaq A., Islam A., Yasmeen S., Sultana K., Asif M.H., Nadeem M., Synthetic Met., 232 (2017), 138.
  • [44] Mo T.C., Wang H. W., Chen S.Y., Yeh Y.C., Ceram. Int., 34 (2008), 1767.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bbc99bae-f580-4a2b-b6be-98efe5cacba5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.