Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
UV radiation as the key factor in prebiotic synthesis and selection of nucleic acid components
Języki publikacji
Abstrakty
Understanding the origins of biomolecules on Earth and discovering plausible reaction pathways that lead to their formation has been a notorious challenge for chemists. In particular, the origins of functional RNA fragments still remain largely obscure. Recent discoveries in this field proposed credible scenarios for the synthesis of nucleosides and nucleotides, demonstrating the crucial role of UV irradiation in promoting selective photochemical transformations and degrading biologically irrelevant components of the so-called prebiotic soup. In this work, I discuss the role of computational chemistry in these discoveries and underscore the importance of investigating prebiotic photochemistry at all stages of prebiotic molecular assembly, starting from small-molecule nucleic acid precursors up to RNA and DNA oligomers. The insights obtained from quantum chemical simulations of possible reaction paths can elucidate the mechanisms of non-intuitive reactions and offer predictive capacity for experiments aiming to discover similar or analogous reactions in related systems.
Wydawca
Czasopismo
Rocznik
Tom
Strony
923--942
Opis fizyczny
Bibliogr. 48 poz., rys., wykr.
Twórcy
autor
- Instytut Materiałów Zaawansowanych, Wydział Chemiczny, Politechnika Wrocławska, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław
Bibliografia
- [1] D. D. Sasselov, J. P. Grotzinger, and J. D. Sutherland, Sci. Adv., 2020, 6, eaax3419.
- [2] S. L. Miller, Science, 1953, 117, 528.
- [3] J. L. Bada and A. Lazcano, Science, 2003, 300, 745.
- [4] O. Leslie E., Crit. Rev. Biochem. Mol. Biol., 2004, 39, 99.
- [5] M. W. Powner, B. Gerland, and J. D. Sutherland, Nature, 2009, 459, 239.
- [6] J. Xu, V. Chmela, N. J. Green, D. A. Russell, M. J. Janicki, R. W. Góra, R. Szabla, A. D. Bond, J. D. Sutherland, Nature, 2020, 582, 60.
- [7] J. Xu, N. J. Green, D. A. Russell, Z. Liu, and J. D. Sutherland, J. Am. Chem. Soc., 2021, 143, 14482-14486.
- [8] S. Ranjan and D. D. Sasselov, Astrobiology, 2016, 16, 1, 68.
- [9] S. Ranjan and D. D. Sasselov, Astrobiology, 2017, 17, 169.
- [10] R. Szabla., “CHAPTER 5. Rethinking UV-induced Prebiotic Selection of Biomolecules”, Prebiotic Photochemistry: From Urey-Miller-like Experiments to Recent Findings, The Royal Society of Chemistry, 2021.
- [11] N. J. Green, J. Xu, and J. D. Sutherland, J. Am. Chem. Soc., 2021, 143, 7219.
- [12] B. H. Patel, C. Percivalle, D. J. Ritson, C. D. Duffy, J. D. Sutherland, Nat. Chem., 2015, 7, 301.
- [13] K. Kleinermanns, D. Nachtigallová, and M. S. de Vries, Int. Rev. Phys. Chem., 2013 32, 308.
- [14] A. L. Sobolewski and W. Domcke, Phys. Chem. Chem. Phys., 2004, 6, 2763.
- [15] A. L. Sobolewski and W. Domcke, Europhys. News, 2006, 37, 20.
- [16] M. Barbatti, A. J. A. Aquinoa, J. J. Szymczak, D. Nachtigallová, P. Hobza, H. Lischka, Proc. Natl. Acad. Sci., 2010, 107(50), 21453.
- [17] S. Boldissar and M. S. de Vries, Phys. Chem. Chem. Phys., 2018, 20, 15, 9701.
- [18] A. A. Beckstead, Y. Zhang, M. S. de Vries, and B. Kohler, Phys. Chem. Chem. Phys., 2016, 18, 24228.
- [19] F. Bernardi, M. Olivucci, and M. A. Robb, Chem. Soc. Rev., 1996, 25, 321.
- [20] T. J. Martinez, Nature, 2010, 467, 412.
- [21] H. Lischka et al., Chem. Rev., 2018, 118, 7293.
- [22] P. G. Szalay, T. Müller, G. Gidofalvi, H. Lischka, and R. Shepard, Chem. Rev., 2012, 112, 108.
- [23] J. Finley, P.-Å. Malmqvist, B. O. Roos, and L. Serrano-Andrés, Chem. Phys. Lett., 1998, 288, 299.
- [24] A. Dreuw, M. Wormit, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2014, 5, 82.
- [25] F. Plasser, R. Crespo-Otero, M. Pederzoli, J. Pittner, H. Lischka, and M. Barbatti, J. Chem. Theory Comput., 2014, 10, 1395.
- [26] S. Hoshika et al., Science, 2019, 363, 884.
- [27] R. Szabla, R. W. Góra, and J. Šponer, Phys. Chem. Chem. Phys., 2016, 18, 20208.
- [28] G. Gate, R. Szabla, M. R. Haggmark, J. Šponer, A. L. Sobolewski, and M. S. de Vries, Phys. Chem. Chem. Phys., 2019, 21, 13474.
- [29] G. Gate, A. Williams, S. Boldissar, J. Šponer, R. Szabla, and M. de Vries, Photochem. Photobiol., 2024, 100, 404.
- [30] M. P. Callahan et al., Proc. Natl. Acad. Sci., 2011, 108, 13995.
- [31] J. A. Berenbeim et al., J. Phys. Chem. Lett., 2017, 8, 5184.
- [32] L. M. F. Oliveira, D. Valverde, G. J. Costa, and A. C. Borin, Photochem. Photobiol., 2024, 100, 323.
- [33] J. Xu et al., Nat. Chem., 2017, 9, 303-309.
- [34] S. J. Roberts et al., Nat. Commun., 2018, 9, 4073.
- [35] M. J. Janicki and R. Szabla, Angew. Chem. Int. Ed., 2025, 64, e202413498.
- [36] J. W. Szostak, Nature, 2009, 459, 171.
- [37] R. Szabla, D. Tuna, R. W. Góra, J. Šponer, A. L. Sobolewski, and W. Domcke, J. Phys. Chem. Lett., 2013, 4, 2785.
- [38] R. Szabla, J. Šponer, and R. W. Góra, J. Phys. Chem. Lett., 2015, 6, 1467.
- [39] Z. R. Todd, R. Szabla, J. W. Szostak, and D. D. Sasselov, Chem. Commun., 2019, 55, 10388.
- [40] L. Bertram, S. J. Roberts, M. W. Powner, and R. Szabla, Phys. Chem. Chem. Phys., 2022, 24, 21406.
- [41] J. E. Hein, E. Tse, and D. G. Blackmond, Nat. Chem., 2011, 3, 704.
- [42] M. J. Janicki, S. J. Roberts, J. Šponer, M. W. Powner, R. W. Góra, and R. Szabla, Chem. Commun., 2018, 54, 13407.
- [43] A. Mees et al., Science, 2004, 306, 1789.
- [44] D. B. Bucher, C. L. Kufner, A. Schlueter, T. Carell, and W. Zinth, J. Am. Chem. Soc., 2016, 138, 186.
- [45] R. Szabla, H. Kruse, P. Stadlbauer, J. Šponer, and A. L. Sobolewski, Chem. Sci., 2018, 9, 3131.
- [46] C. L. Kufner et al., Chem. Sci., 2024, 15, 2158.
- [47] R. Szabla et al., Nat. Commun., 2021, 12, 3018, 2021.
- [48] M. D. Kirnos, I. Y. Khudyakov, N. I. Alexandrushkina, and B. F. Vanyushin, Nature, 1977, 270, 369.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bbc55e44-f5e6-4c25-9c4d-67e2071972f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.