PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Studying the Sensitivity of Satellite Altimetry, Tide Gauge and GNSS Observations to Changes in Vertical Displacements

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tide gauge observations provide sea level relative to the Earth’s crust, while satellite altimetry measures sea level variations relative to the centre of the Earth’s mass. Local vertical land motion can be a significant contribution to the measured sea level change. Satellite altimetry was traditionally used to study the open ocean, but this technology is now being used over inland seas too. The difference of both observations can be used to estimate vertical crustal movement velocities along the sea coast. In this paper, vertical crustal movement velocities were investigated at tide gauge sites along the Adriatic Sea coast by analyzing differences between Tide Gauge (TG) and Satellite Altimetry (SA) observations. Furthermore, the estimated vertical motion rates were compared with those from nearby GNSS measurements. The study determines the practical relationships between these vertical crustal movements and those determined from unrelated data acquired from the neighbouring GNSS stations. The results show general consistence with the present geodynamics in the Adriatic Sea coastal zone.
Rocznik
Strony
45--58
Opis fizyczny
Bibliogr. 27 poz., fot., tab., wykr.
Twórcy
  • University of Warmia and Mazury in Olsztyn, Department of Geoinformation and Cartography, Olsztyn, Poland
  • University of Warmia and Mazury in Olsztyn, Department of Geoinformation and Cartography, Olsztyn, Poland
  • Riga Technical University, Department of Geomatics, Rīga, Latvia
  • University of Warmia and Mazury in Olsztyn, Department of Geoinformation and Cartography, Olsztyn, Poland
Bibliografia
  • [1] Dodet G., Bertin X., Bouchette F., Gravelle M., Testut L., Wöppelmann G.: Characterization of sea-level variations along the metropolitan coasts of France: waves, tides, storm surges and long-term changes. Journal of Coastal Research, vol. 88 (special issue), 2019, pp. 10–24. https://doi.org/10.2112/SI88-003.1.
  • [2] Bradshaw E., Rickards L., Aarup T.: Sea level data archaeology and the Global Sea Level Observing System (GLOSS). GeoResJ, vol. 6, 2015, pp. 9–16. https://doi.org/10.1016/j.grj.2015.02.005.
  • [3] WCRP Global Sea Level Budget Group: Global sea-level budget 1993–present. Earth System Science Data, vol. 10, 2018, pp. 1551–1590. https://doi.org/10.5194/essd-10-1551-2018.
  • [4] Wöppelmann G., Pouvreau N., Simon B.: Brest sea level record: a time series construction back to the early eighteenth century. Ocean Dynamics, vol. 56(5–6), 2006, pp. 487–497. https://doi.org/10.1007/s10236-005-0044-z.
  • [5] Marcos M., Wöppelmann G., Matthews A. et al.: Coastal sea level and related fields from existing observing systems. Surveys in Geophysics, vol. 40(6), 2019, pp. 1293–1317. https://doi.org/10.1007/s10712-019-09513-3.
  • [6] Bitharis S., Ampatzidis D., Pikridas C., Fotiou A., Rossikopoulos D., Schuh H.: The role of GNSS vertical velocities to correct estimates of sea level rise from tide gauge measurements in Greece. Marine Geodesy, vol. 40(5), 2017, pp. 297–314. https://doi.org/10.1080/01490419.2017.1322646.
  • [7] Wöppelmann G., Marcos M.: Coastal sea level rise in southern Europe and the nonclimate contribution of vertical land motion. Journal of Geophysical Research: Oceans, vol. 117(C1), 2012. https://doi.org/10.1029/2011JC007469.
  • [8] Cazenave A., Dominh K., Ponchaut F., Soudarin L., Cretaux J.F., Le Provost C.: Sea level changes from Topex-Poseidon altimetry and tide gauges, and vertical crustal motions from DORIS. Geophysical Research Letters, vol. 26(14), 1999, pp. 2077–2080. https://doi.org/10.1029/1999GL900472.
  • [9] Nerem R.S., Mitchum G.T.: Estimates of vertical crustal motion derived from differences of TOPEX/POSEIDON and tide gauge sea level measurements. Geo- physical Research Letters, vol. 29(19), 2002, pp. 40-1–40-4. https://doi.org/10.1029/2002GL015037.
  • [10] Haigh I.D., Eliot M., Pattiaratchi C.: Global influences of the 18.61 year nodal cycle and 8.85 year cycle of lunar perigee on high tidal levels. Journal of Geophysical Research: Oceans, vol. 116(C6), 2011. https://doi.org/10.1029/2010JC006645.
  • [11] Wöodworth P.L., Player R.: The permanent service for mean sea level: An update to the 21st century. Journal of Coastal Research, vol. 19(2), 2003, pp. 287–295. http://www.jstor.org/stable/4299170.
  • [12] Pajak K., Kowalczyk K.: A comparison of seasonal variations of sea level in the southern Baltic Sea from altimetry and tide gauge data. Advances in Space Research, vol. 63(5), 2019, pp. 1768–1780. https://doi.org/10.1016/j.asr.2018.11.022.
  • [13] PSMSL: https://www.psmsl.org/ [access: 20.01.2020].
  • [14] AVISO: http://www.aviso.oceanobs.com [access: 15.01.2020].
  • [15] CMEMS: http://marine.copernicus.eu/services-portfolio/access-to-products/ [access: 15.01.2020].
  • [16] NGL (Nevada Geodetic Laboratory): http://geodesy.unr.edu [access: 15.01.2020].
  • [17] SONEL (Système d’Observation du Niveau des Eaux Littorales): https://www.sonel.org/ [access: 15.01.2020].
  • [18] Garcia D., Vigo I., Chao B.F., Martinez M.C.: Vertical crustal motion along the Mediterranean and Black Sea coast derived from ocean altimetry and tide gauge data. Pure and Applied Geophysics, vol. 164(4), 2007, pp. 851–863. https://doi.org/10.1007/978-3-7643-8417-3_13.
  • [19] Cazenave A., Cabanes C., Dominh K., Mangiarotti S.: Recent sea level change in the Mediterranean Sea revealed by Topex/Poseidon satellite altimetry. Geophysical Research Letters, vol. 28(8), 2001, pp. 1607–1610. https://doi.org/10.1029/2000GL012628.
  • [20] Avsar N.B., Jin S., Kutoglu H., Gurbuz G.: Sea level change along the Black Sea coast from satellite altimetry, tide gauge and GPS observations. Geodesy and Geodynamics, vol. 7(1), 2016, pp. 50–55. https://doi.org/10.1016/j.geog.2016.03.005.
  • [21] Łyszkowicz A., Bernatowicz A.: Geocentric Baltic Sea level changes along the southern coastline. Advances in Space Research, vol. 64(9), 2019, pp. 1807–1815. https://doi.org/10.1016/j.asr.2019.07.040.
  • [22] Gazeaux J., Williams S., King M., Bos M. et al.: Detecting offsets in GPS time series: First results from the detection of offsets in GPS experiment. Journal of Geophysical Research: Solid Earth, vol. 118(5), 2013, pp. 2397–2407. https://doi.org/10.1002/jgrb.50152
  • [23] Ihde J., Augath W., Sacher M.: The Vertical Reference System for Europe. [in:] Drewes H., Dodson A.H., Fortes L.P.S., Sánchez L., Sandoval P. (eds.), Vertical Reference Systems, International Association of Geodesy Symposia, vol. 124, Springer. https://doi.org/10.1007/978-3-662-04683-8_64.
  • [24] Kowalczyk K., Pajak K., Wieczorek B., Naumowicz B.: An Analysis of Vertical Crustal Movements along the European Coast from Satellite Altimetry, Tide Gauge, GNSS and Radar Interferometry. Remote Sensing, vol. 13(11), 2021, 2173. https://doi.org/10.3390/rs13112173.
  • [25] van Dam T., Collilieux X., Wuite J. et al.: Nontidal ocean loading: amplitudes and potential effects in GPS height time series. Journal of Geodesy, vol. 86, 2012, pp. 1043–1057. https://doi.org/10.1007/s00190-012-0564-5.
  • [26] Zygmunt M., Rajner M., Liwosz T.: Assessment of continental hydrosphere loading using GNSS measurements. Reports on Geodesy and Geoinformatics, vol. 101(1), 2016, pp. 36–53. https://doi.org/10.1515/rgg-2016-0020.
  • [27] Baker T.: Tidal deformations of the Earth. Science Progress (1933-), vol. 69(274), pp. 197–233. http://www.jstor.org/stable/43420600 [access: 29.06.2021].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bbbd69b5-d522-46f7-873c-3084290af85f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.