The rate of release of macronutrients from new organic-mineral fertilizers

Ewa Kuśmirek

The rate of release of macronutrients from new granulated organic-mineral fertilizers formed from spent mushroom substrate was investigated in the conditions of a microplot experiment in the laboratory. Nitrate(V) and ammonium were estimated using a colorimetric method using a flow auto-analyzer after extraction in 1% solution K₂SO₄ and in 0.01 mol \cdot dm - 3 CaCl₂, pH-value – by potentiometric method after extraction with 1 mol \cdot dm - 3 KCl, available P and K by the Egner-Riehm method. New granulated organic-mineral fertilizers formed from spent mushroom substrate had an impact on the pH-value seven days after application. This tendency was intensified in the following weeks. New granulated organic-mineral fertilizers were a source of available form of nitrogen (nitrate(V), ammonium), potassium and phosphorus.

Key words: spent mushroom substrate, organic-mineral fertilizers, rate of macronutrient release, sewage sludge

Introduction

The challenges facing modern agriculture also include taking care of the environment, providing good quality of the soil and obtaining optimal yields. Generally, Polish soils are characterized by very acidic, acidic or slightly acidic reaction, lower content of soil organic matter, low content of macronutrients and low water retention capacity. 56.6 % of them are classified into the light agronomic category of soils. An unfavorable relationship between the N : P : K content in applied mineral fertilizers and the decreasing consumption of calcium fertilizers has been observed in Poland in recent years. It is important to regulate soil pH. The availability of toxic metals depends on the pH-value of the soil and the content of organic matter. Adjusting the pH-value has a positive influence on the growth of crop, yield and reduction of nitrogen and phosphorus losses. This increased the availability of macronutrients for plants [1]. 38 % of soil in Poland are characterized by a pH-value < 5.5 (Fig. 1). The content of macronutrients in Polish soils were estimated by the Research Laboratories of the National Chemistry-Agriculture Station on samples taken from 37,000 of farms per year [2]. The content of macronutrients and the pH-value of the soil characterized for Poland was estimated based on their results (Fig. 1, Fig. 2) according to [3]. Adjusting the pH-value is necessary for 32 %, needed for 17.2 % and recommended for 13.4 % of them [1]. The estimation of the nitrogen content in the soil is very important for developing a fertilization and environmental protection plan. The content of mineral nitrogen in the soil was characterized by a high dispersion according to the results of analysis of soil samples collected in Poland (in 2015). The ammonium content ranged from 0.43 to 42.6 mg \cdot kg $^{-1}$ (average 8.82 mg \cdot kg $^{-1}$) and the nitrate(V) content ranged from 0.00 to 110.58 mg \cdot kg $^{-1}$ (average 10.19 mg \cdot kg $^{-1}$) [4].

It is necessary to protect the natural environment, taking care for the soil fertility and optimal supply of nutrients for crops according to [1]. The decrease in livestock population [5] caused a decline in the availability of organic fertilizers such a farmyard manure. It has a negative impact on the organic matter content in the soil. An alternative to farmyard manure are composts, classified as organic fertilizers (according to [6, 7]). Their production is a good way to disposal organic wastes, because wastes with an organic carbon content above 5 % could be naturally managed in agriculture according to [8]. One kind of them is spent mushroom substrate (SMS). About 5-6 kg of this waste is generated by the production of 1 kg of Agaricus bisporus [9]. It is important to manage this waste, because Poland is the European leader in the production of mushroom (third place in the world). Two countries, China and the USA, are the largest global producers of Agaricus bisporus. 302 916 Mg of mushroom was produced in our country in 2017 [10]. 1 514 580 - 1 817 496 Mg of this waste was generated that year. Spent mushroom substrate (SMS) is used after mushroom harvest (fresh mushroom substrate) or after the composting process (spent mushroom compost SMC) [11]. Compost production is a good solution for management of organic wastes (e.g. municipal solid wastes, sewage sludge). The composting process had a positive impact on the elimination of Salmonella enteritidis bacteria [12]. Composts based on SMS are used for fertilization. They had the positive impact on soil properties and yield of test-plants [13, 14]. This tendency was observed by other researchers [15, 16] and in own investigations, but organic-mineral fertilization had a stronger impact on yielding and soil [17, 18, 19]. The application

Figure 1. Structure of soil pH-value in Poland in 2014-2017 (according to [3])

Figure 2. Classes of P, K and Mg content in soil in Poland in 2014-2017 (according to [3])

of SMS and mineral fertilization with nitrogen and potassium fertilizers had a greater impact on the orchard grass [20] and soil properties [21]. Organic-mineral fertilization resulted in a higher yield and content of macronutrients in the test-plant (e.g. higher potassium content in *Lolium multiflorum* [22] or magnesium in common cabbage *Brassica oleracea* L. and corn *Zea mays* L. [19]). According to [13] composts based on SMS should be produced with the supplementation of potassium fertilizers. Otherwise, plantations must be additionally top-dressing with potassium [13,20], which unnecessarily generates costs and is disadvantageous for the natural environment (e.g. depletion of natural resources, exhaust emissions, time-consuming) [23].

The quality of yields is depended on the different mineralization level of nitrogen in each variant of used fertilizers: compost, farmyard manure, organic-mineral fertilizer [24]. The rate of release of nitrogen and other macronutrients ions release is important for yielding and environmental protection. Organic-mineral fertilizers are characterized by rapid mineralization of nitrogen from inorganic fertilizer and constant release of this macronutrient in organic fertilizers [25]. The content of available phosphorus in the soil increased on objects fertilized with SMS and mineral fertilization compared to only SMS. The similar tendency was observed between objects with mineral fertilization only compared to other fertilized with farmyard manure and mineral fertilizers. SMS had an impact on the increase of available phosphorus in the soil [26]. Plants cultivated at objects with sewage sludge (supplemented with mineral potassium fertilizers) contained less of potassium compared on to others cultivated at farmyard manure (an identical dose of potassium was applied to all objects) [27].

It is very important to adjust the rate of release of nutrients from fertilizers to the current needs of plants. Slowrelease fertilizers, called controlled release fertilizers, are characterized by the slow rate of release of macronutrients. They must meet each of the following three criteria: 1) no more than 15% of the components were released within 24 hours, 2) no more than 75% of the components were released within 28 days, 3) at least 75% of ingredients were released in the "Release time" declared by their producer [28]. The durability of the fertilizer pellet is important from the point of view of the dynamics of nitrogen and phosphorus release to the soil. Too soft pellets disintegrate quickly and the released biogens can be washed away into the profile (it is the risk of water pollution) [23]. Therefore, a prerequisite to use new granulated organic-mineral fertilizers in a sustainable way is to quantify the amount of available forms of nitrogen, phosphorus and potassium and their rate of release into the soil.

The Aim of the Investigation

The aim of this investigation is an evaluation of the rate of nitrogen, phosphorus and potassium from new granulated organic-mineral fertilizers formed from SMS and to estimate their impact on the pH-value of soil within four weeks.

Methods and materials

The release of nutrients from granulated organic-mineral fertilizers on soil properties is investigated under the conditions of a microplot experiment within four weeks. The research was based on a laboratory experiment at the Experimental Station of the Faculty of Agriculture and Biology – Warsaw University of Life Sciences in Skierniewice,

Middle Mazovian Lowland, Central Part of Poland (latitude: N 51° 58', longitude: E 20° 10'). Glass beakers (capacity: 1000 cm⁻³) were used as objects in the microobject experiment. They were filled soil from an experimental untreated field (without fertilization) on light soil. 500 g of air-dry soil was used to set up one object. Humidity accounted for 60% of the field water capacity. The loss of water due to evaporation was regularly supplemented with demineralized water using the weight method. Microplots were incubated in laboratory conditions - temperature 20°C. The dose of fertilizer applied to one object contained 0.6 g of nitrogen. The total number of objects was 28: six granulated organic-mineral fertilizers formed from SMS and the control object without fertilization (all in four replications). After the first, second, third and fourth week of the micoplot experiment 1 object from each combination was prepared for analysis. The experiment started on June 30 and completed on July 28, 2011. The soil used in this experiment was from the unfertilized object (the control field without fertilization since 1923). It had been classified as Luvisols [29]. Soil textural composition was loamy sand (in the layer 0-30 cm, the content of particles was as follows: <0.002 mm - 7%, 0.002-0.05 mm - 6% and >0.05 mm - 87%). The pH-value of the soil used in the experiment was 3.91. This soil contained 26.1 mg kg⁻¹ of $P_{available}$ and 84.0 mg \cdot kg⁻¹ of Kavailable.

Granulated organic-mineral fertilizers OM1-OM6 were formed from composts made of SMS (Compost A) or SMS mixed with sewage sludge in the ratio 5:1 (Compost B). They were supplemented with mineral fertilizers (Tab. 1) before the granulation. Their percentage contents of used ingredients (Tab. 1) were presented in (Fig. 3). These fertilizers were granulated using a modified Testmer drum granulator.

Compost A (SMC) was characterized by a higher value of pH compared to compost B (made of mixed SMS and sewage sludge), but the opposite tendency was observed for granulated organic-mineral fertilizers formed from them. OM1-OM4 had lower pH-value in comparison to OM5 and OM6 (Fig. 4).

Granulated organic-mineral fertilizers contained more nitrogen, phosphorus or potassium, and less organic coal, calcium and magnesium compared to composts used to form them (Tab. 2).

Table 1. Ingredients of granulated organic – mineral fertilizers

	Compost		Mineral fertilizers							
E				Nitrogen fertilize	rs	Phosphorus fertilizer	Potassium fertilizer			
rennizer	А	В	urea CO(NH ₂) ₂	ammonium nitrate NH4NO3	ammonium sulfate (NH4)2SO4	single superphosphate Ca(H2PO4)2 [.] H2O	high-potassium salt (KCl - 48%K)			
OM1	+	1	+	-	-	+	+			
OM2	+	1	-	+	-	+	+			
OM3	+	1	-	-	+	+	+			
OM4	+	-	-	+	-	-	-			
OM5	-	+	-	-	-	-	-			
OM6	-	+	-	-	+	-	-			

Figure 3. Ingredients used to form new granulated organic-mineral fertilizers

Figure 4. The value of pH of new granulated organic-mineral fertilizers and composts used to form them

Table 2. The content of macron	utrients in aranulated ord	anic-mineral fertilizers a	nd composts used to form them

Kind of fortilizor	Corg	Ν	Р	K	Ca	Mg			
Kind of fertilizers	%								
Compost A	25.22	1.35	0.62	0.39	6.20	0.40			
Compost B	41.13	2.20	0.71	0.27	4.48	0.42			
OM1	21.20	7.60	1.82	2.27	7.00	0.31			
OM2	22.43	2.50	1.85	2.70	7.13	0.43			
OM3	18.28	5.00	0.67	1.16	5.86	0.32			
OM4	20.47	8.30	0.93	0.39	4.11	0.35			
OM5	41.13	2.20	0.71	0.27	4.48	0.42			
OM6	34.82	6.30	0.95	0.36	4.22	0.37			

Table 3.	The content	of macronutrie	nts in the dos	e of granulate	d organic-minera	I fertilizers for eac	h object
				0	0		

Fertilizer	applied dose	Ν	Corg	Р	K	Ca	Mg			
rentilizer	g									
OM1	7.89	0.60	1.67	0.14	0.18	0.55	0.02			
OM2	24.00	0.60	5.38	0.44	0.65	1.71	0.10			
OM3	12.00	0.60	2.19	0.08	0.14	0.70	0.04			
OM4	7.23	0.60	1.48	0.07	0.03	0.30	0.03			
OM5	27.27	0.60	11.22	0.19	0.07	1.22	0.11			
OM6	9.52	0.60	3.32	0.09	0.03	0.40	0.04			

Samples of soil were collected after each week of the experiment and then the nitrate(V) and ammonium ions were analyzed in soil using the colorimetric method using a flow auto-analyzer (extraction in 1% solution K₂SO₄ according to [30] and with extraction in 0.01 mol \cdot dm $^{-3}$ CaCl₂), (this method with CaCl₂ was proposed by V.J.G. Houba, I. Novozamsky, J. Uittenbogaard and J.J. van der Lee in 1983 for the extraction of soluble nitrogen from the soil with the ratio 10:1 of extraction solution to soil with the duration of 2 hours [31]). The soil samples were air dried, sieved to < 2 mm (fragments of the granules were separated) and characterized for: pH - by potentiometric method after extraction in 1 mol · dm - 3 KCl [32] using pHmeter Schott, available P and K by Egner-Riehm (DL) method [33, 34], using AAS SOLAAR M6 ThermoElementar for potassium and spectrophotometer Genesys 10 Thermo Electron for phosphorus. The results were classified according to classes of soil pH-value (estimated in 1 mol dm⁻³ KCl) and the content of macronutrients for NO₃, NH_4^+ and available P and K.

The results of chemical analyzes were statistically processed by the method of analysis of variance (ANOVA) using Statgraphics Stratus software program. The Tukey's test was used to assess differences between mean values at the significance level $\alpha \leq 0.05$. Estimation of soil pH-value based

on the content of ions H^+ (the least significant difference LSD and standard deviation SD were calculated on $[H^+]$ according to the equation: $pH = -\log 10 \ [H^+]$).

Results

All of granulated organic-mineral fertilizers had a positive impact on increasing the soil pH-value. They changed soil pH class from very acidic to slightly acidic (OM1) or acidic (OM2, OM4, OM5 and OM6). Objects fertilized by OM6 remained in a very acidic class, but noted differences were statistically significant compared to the control object without fertilization (Tab. 4). Other granulated organicmineral fertilizers were characterized by the stronger impact on the pH-value of the soil. The differences between them were not statistically significant (Tab. 4). All granulated organic-mineral fertilizers had a positive impact on the pHvalue of the soil in the first week after application (Fig. 5).

There was observed statistically significant differences between composts used to form fertilizers (LSD_{0.05} for factor 2.34141E-05 [H+], two homogenous groups – first group: OM1-OM4 and the second: OM5-OM6). OM5 and OM6 contained sewage sludge. Objects with the compost made only of SMS (SMC) had a stronger impact on the pH-value of the soil. However, the kind of used nitrogen mineral fertilization did not have a statistically significant

Table 4. Impact of granulated organic-mineral fertilizers on the pH-value of the soil

		pH-value of the soil (soil pH class)								
Fertilizer combination	HG		W	eek		Mean	SD			
		т	П	ш	IV	for fertilizer				
		1	11	111	1V		[H ⁺]			
		3.91	3.85	3.95	3.98	3.92				
Control	a	(very acidic)	(very acidic)	(very acidic)	(very acidic)	(very acidic)	1.63431E-05			
		6.10	6.07	5.73	5.92	5.93				
OM1	с	(slightly acidic)	(slightly acidic)	(slightly acidic)	(slightly acidic)	(slightly acidic)	4.90784E-07			
01/2		4.39	4.33	4.78	4.99	4.54	1.78797E-05			
OMZ	c	(very acidic)	(very acidic)	(acidic)	(acidic)	(acidic)				
OM2		5.32	5.19	4.85	4.28	5.02	4 52566E 06			
OWIJ	Ľ	(acidic)	(acidic)	(acidic)	(very acidic)	(acidic)	4.92900E-00			
		6.19	5.74	5.40	5.30	5.63	1.87868E-06			
OM4	с	(slightly acidic)	(slightly acidic)	(acidic)	(acidic)	(slightly acidic)				
0145	_	4.45	5.15	5.03	5.13	4.83	1 2905 (E 05			
OMS	с	(very acidic)	(acidic)	(acidic)	(acidic)	(acidic)	1.38030E-03			
		4.07	3.93	4.15	4.18	4.43				
OM6	b	(very acidic)	(very acidic)	(very acidic)	(very acidic)	(very acidic)	2.3207E-05			
HG for week		a	а	a	a					
Mean for week		4.61375E-05	4.15134E-05	3.09258E-05	3.05398E-05		\prec			
SD for week		5.31997E-05	5.39311E-05	4.21896E-05	3.94534E-05					
Total mean		3.72791E-05								
Total SD		4.54309E-05								
LSD _{0,05} for fertilizer [H ⁺]		3.1814E-05								
LSD _{0,05} for week [H ⁺]		7.02535E-05								

HG - homogenous groups

Figure 5. Interactions between the fertilizer combination and the week of the experiment on the pH-value of the soil (generated using Statgraphics Stratus)

impact on the pH-value (LSD_{0.05} for factor mineral fertilizer 5.59291E-05 [H+], one homogenous group).

The kind of the granulated organic-mineral fertilizers had statistically significant impact on the rate of release of nitrate(V). It was observed especially on the object with OM4. The similar tendency was observed on OM2. These fertilizers were formed with the addition of ammonium nitrate (NH₄NO₃). The rate of NO₃⁻ release increased in the following weeks on objects with OM4 and OM2 (Tab. 5). It was due to the use of ammonium nitrate for supplementation (Tab. 5). Other fertilizers were characterized by a slower rate release of nitrate(V). The impact of OM3 and OM6 supplemented with ammonium sulfate $(NH_4)_2SO_4$ was higher compared to the control object without fertilization, but these differences were not statistically significant. OM5 and OM1 were characterized by a stronger, but similar impact on the change of soil nitrate(V) content. The least content of nitrate(V) (NO_3) in soil was noted on the control object without fertilization (Tab. 5, Fig. 6). The content of this form of nitrogen in soil was analyzed using CaCl₂ and K₂SO₄ extraction. However, the differences between the methods were not statistically significant. Fertilizers were different with the rate of macroelement release in individual weeks. More nitrate(V) was released from OM4 and OM2 last week compared to the first, but these differences were not statistically significant (Tab. 5, Fig. 6). OM5 and OM6 (fertilizers formed from the compost containing sewage sludge) had a less impact in comparison to others formed from SMC (Tab. 5).

There was observed statistically significant differences between composts used to form fertilizers (LSD_{0.05} for factor

24.15, two homogenous groups – the first group: OM1-OM4, mean: 49.16 +/- 46.31 and the second: OM5-OM6, mean: 19.23 +/- 16.65). OM5 and OM6 contained sewage sludge. Objects with the compost made exclusively of SMS had a stronger impact on the content of nitrate(V) in the soil. The kind of used nitrogen mineral fertilizer had a statistically significant impact on the content of this form of nitrogen (LSD_{0.05} for factor mineral fertilizer 26.62, two homogenous groups – the first: OM1, OM3, OM5 and OM6, mean for urea 28.43 +/- 2.44, mean for ammonium sulfate 6.03 +/- 3.00, mean for OM5 34.76 +/- 6.35 and the second: OM2 and OM4, mean for ammonium nitrate 79.91 +/- 47.98).

The kind of granulated organic-mineral fertilizers had a statistically significant impact on the rate of release of NH_{4^+} (Tab. 6). All fertilizers used had a positive impact on the increase in the content of ammonium ions in the soil. However, these differences were statistically significant for OM1, OM3, OM4 and OM6 compared to the control object without fertilization. This was noted especially for OM4. The similar tendency was observed for OM6 and OM3 (and for OM2). These fertilizers were formed using mineral nitrogen fertilization: ammonium nitrate (NH₄NO₃) was used for OM2 and OM4 and ammonium sulfate $(NH_4)_2$ SO₄ for OM3 and OM6. OM4 was characterized by the highest influence on the content of NH_{4^+} in the soil. It was statistically significant. The impact of OM3 and OM6 was higher in comparison to the control object without fertilization, but these differences were not statistically significant. OM5 and OM1 were characterized by a stronger, but similar impact on the change of ammonium content

	HG			Nitrate(V) con	itent in the soil				
Fomilizon combination				mg NC	03⁻ · kg⁻¹				
rentilizer combination			W	eek		Mean	SD		
		Ι	II	III	IV	for fer	for fertilizer		
Control	a	1.384	1.483	1.956	2.805	1.907	0.780326		
OM1	abc	27.810	30.102	29.415	26.399	28.431	2.44107		
OM2	с	57.817	53.616	40.673	49.803	50.477	18.4739		
OM3	ab	8.569	7.554	7.258	10.097	8.369	2.26354		
OM4	d	50.949	75.703	147.876	162.868	109.349	51.0969		
OM5	bc	33.951	37.475	34.060	33.572	34.764	6.3484		
OM6	ab	4.221	4.246	3.247	3.047	3.690	1.30059		
HG for week		a	a	a	a				
Mean for week		26.386 30.025 37.783 41.227							
SD for week		23.122 27.873 49.495 54.679							
HC for mothed	CaCl ₂			ć	a				
rig for method	K ₂ SO ₄			í	a				
Moon for mothed	CaCl ₂			38.	136				
Weall for method	K ₂ SO ₄			29.	574				
SD for most of	CaCl ₂			42.	924				
SD for method	K ₂ SO ₄			37.	984				
Total mean		33.855							
Total SD		40.391							
LSD _{0,05} for fertilizer		31.851							
LSD _{0,05} for week		41.215							
LSD _{0,05} for method		21.717							

Table 5. The rate of release	e of nitrate(V) (NO₃⁻) from	granulated organic-mineral fertilizers
------------------------------	-----------------------------	--

HG - homogenous groups

Figure 6. Interactions between the fertilizer combination and the week of the experiment on the rate of release of NO₃⁻⁻ (generated using Statgraphics Stratus)

in the soil. The least content of ammonium (NH_4^+) in the soil was noted on the control object without fertilization (Tab. 6, Fig. 7). The content of this form of nitrogen in the soil was analyzed using CaCl₂ and K₂SO₄ for extraction. However, the differences between methods were not statistically significant. Fertilizers were different among themselves

in the rate of this ion release in individual weeks. More ammonium was released from OM4 and OM6 last week compared to the first, but for OM1, OM2, OM3 and OM5 these values were similar during the experiment (Tab. 6, Fig. 7).

	HG		Ar	nmonium ions o	content in the so	il		
Fortilizor combination	-	$mg NH_{4^{+}} \cdot kg^{-1}$						
Fertilizer combination			We	ek		Mean	SD	
	-	Ι	II	III	IV	for fer	tilizer	
Control	a	0.082	0.104	0.157	0.107	0.113	0.047	
OM1	bc	31.682	31.826	30.618	25.866	29.998	4.846	
OM2	ab	14.970	14.457	15.578	14.230	14.591	2.213	
OM3	bc	31.056	29.396	34.105	35.344	32.475	6.232	
OM4	d	45.123	45.330	70.063	88.462	62.245	30.175	
OM5	ab	12.548	15.331	15.949	13.905	14.433	3.525	
OM6	с	32.683	32.902	30.680	46.491	35.689	8.344	
HG for week		а	a	a	a			
Mean for week		23.896	24.192	28.164	32.058	>	<	
SD for week		15.219	15.609	24.562	30.265			
HC for method	CaCl ₂	a						
11G for method	K ₂ SO ₄			а	ι			
Moon for method	CaCl ₂			28.0	528			
Mean for method	K ₂ SO ₄			25.5	528			
SD for mothed	CaCl ₂			21.5	557			
SD for method	K ₂ SO ₄			22.0	564			
Total mean		27.078						
Total SD		21.971						
LSD _{0,05} for fertilizer		18.913						
LSD _{0,05} for week	22.402							
LSD _{0,05} for method		11.851						

Table 6. The rate of release of ammonium (NH4+) from granulated organic-mineral fertilizers

HG - homogenous groups

Figure 7. Interactions between the fertilizer combination and the week of the experiment on the rate of release of NH₄⁺ (generated using Statgraphics Stratus)

Composts used to form granulated organic-mineral fertilizers were characterized by the similar impact on the rate of release of ammonium. The differences between them were not statistically significant (LSD_{0.05} for factor 12.44). Supplementation with nitrogen mineral fertilizers had an impact on the diversity of the rate of ammonium release (LSD_{0.05} for factor 22.42, two homogenous groups – the first: OM1, OM3, OM5 and OM6, the second: OM1, OM2, OM3, OM4, OM6, mean for urea 30.00 +/- 4.85, mean for ammonium sulfate 34.08 +/- 7.31, mean for OM5 14.43 +/- 3.52 mean for ammonium nitrate 38.42 +/- 32.13). OM2 and OM4 with ammonium nitrate were

	HG			Available P i	n the soil					
		Soil class of available phosphorus								
Fertilizer combination				mg P ·	kg-1					
			week							
		Ι	II	III	IV	for fertiliz	er			
Control	а	23.88	23.46	26.55	25.52	24.84	14			
Control		(low)	(low)	(low)	(low)	(low)	1.1			
OM1	ab	28.20	38.90	32.31	37.04	34.11	4.9			
OWI		(low)	(low)	(low)	(low)	(low)	4.0			
OM2	b	37.04	42.19	48.16	49.60	44.24	5 0			
OWIZ		(low)	(low)	(medium)	(medium)	(medium)	J.0			
0.112	b	34.76	31.28	45.46	43.74	38.82	6.9			
OM3		(low)	(low)	(medium)	(low)	(low)	0.9			
	Ь	34.58	33.75	38.07	38.49	36.21	2.6			
OM4		(low)	(low)	(low)	(low)	(low)	7 2.4			
OM5	ab	31.49	31.28	40.13	32.31	33.80	6.2			
OWIS		(low)	(low)	(low)	(low)	(low)	7 4.2			
OM	b	50.01	35.60	43.22	46.51	43.83	()			
OMB		(medium)	(low)	(low)	(medium)	(low)	0.2			
HG for week		а	a	а	a		/			
Mean for week		34.28	33.78	39.03	39.03	\sim				
SD for week		8.25	6.05	7.59	8.38					
Total mean 36.5511				11	~					
Total SD		7.636								
LSD _{0,05} for fertilizer		11.248								
LSD _{0.05} for week 11.244										

Table 7. The rate of release of available phosphorus from granulated organic-mineral fertilizers

HG - homogenous groups

characterized by the stronger impact in comparison to OM3 and OM6 with ammonium sulfate and OM1 with urea. Organic-mineral fertilizers containing nitrogen mineral fertilizers had the higher influence on the rate of release of ammonium compared to OM5 formed from Compost B only.

The pH-value of the soil had a strong impact on the content of NO_3^- and NH_4^+ in the soil. The lowest content was recorded on very acidic soils. This tendency was observed for both forms of nitrogen. The increase of pH-value resulted in the increase of the content of nitrate(V) $(LSD_{0.05}$ for the classes of the pH-value of the soil 32.89, total mean 33.86 +/- 40.39, two homogenous groups). The average content of nitrate(V) in very acidic soil 15.25 +/-22.70 mg NO3⁻ kg⁻¹, in acidic soil 49.07 +/- 54.13 mg NO_3^{-1} kg⁻¹ and in slightly acidic 40.06 +/- 19.55 mg NO_3^{-1} kg-ĭ. The similar tendency was observed for ammonium (LSD_{0.05} for classes of the pH-value of the soil 15.03, total mean 27.08 +/- 21.79, two homogenous groups). The average content of NH_4^+ in very acidic soil 16.76 +/- 16.39 mg NH₄^{+ ·} kg⁻¹, in acidic soil 33.04 +/- 27.61 mg NH₄^{+ ·} kg⁻¹ and in slightly acidic 35.07 +/- 9.57 mg NH_4^+ kg⁻¹.

All granulated organic-mineral fertilizers had a positive impact on the increase of phosphorus content in the soil, but these differences between them were not statistically significant. The soil class of available forms of this macronutrient was changed only for OM2, OM3 and OM6 by one or two weeks. The lowest content of phosphorus was observed on the control object without fertilization. These differences were not statistically significant compared to OM1 and OM5 (Tab. 7). Generally, the soil content of available P increased with time (Fig. 8). However, the differences between the weeks were not statistically significant (Tab. 7). Most phosphorus was applied on the objects fertilized with OM2 (less was used on the objects with OM5 and OM1) (Tab. 3).

The rate of phosphorus release (forms available for plants estimated by the Egner-Riehm method) was similar on objects fertilized with fertilizers formed from both kinds of composts (LSD_{0.05} for factor 5.83). However, OM5 and OM6, containing sewage sludge, had a stronger impact on the increase of soil content of this form of the investigated macronutrient. Supplementation with a single superphosphate for OM1, OM2 and OM3 influenced the value of phosphorus content, but these differences were not statistically significant compared to OM4, OM5 and OM6 formed without that mineral fertilizer (LSD_{0.05} for factor 5.48).

Granulated organic-mineral fertilizers had an impact on the increase of researched form of phosphorus in the soil. All of them changed the content of phosphorus within the soil class. OM2 was characterized by the statistically significant strongest influence in comparison to other fertilizers. OM1 and OM3 had a lower impact than OM2. Their impact was stronger compared to OM4, OM5 and OM6. These fertilizers were formed without supplementa-

Figure 8. Interactions between the fertilizer combination and the week of the experiment on the rate of release of available form of phosphorus (generated using Statgraphics Stratus)

tion with single superphosphate $Ca(H_2PO_4)_2 \cdot H_2O$. They caused the increase of the content of the researched form of phosphorus in the soil, but these differences were not statistically significant in comparison to control object without fertilization (Tab. 7, Fig. 8). OM1, OM2 and OM3 had a statistically significant stronger impact on the increase of the available potassium content in the soil compared to other organic-mineral fertilizers. They were supplemented with potassium salt. OM1, OM2 and OM3 contained more of this macronu-

Table 8. The rate of release of available potassium from granulated organic-mineral fertilizers

	HG	Available K in the soil								
Fertilizer combination		(son class of available potassium) $ma K \cdot ka^{-1}$								
r cremzer comomation			w	eek	5	Mean	SD			
		Ι	II	III	IV	for fertili	zer			
Control		26.0	28.0	80.0	89.0	55.6	33 /			
Control	а	(very low)	(very low)	(low)	(low)	(low)	55.4			
OM1	bc	271.0	234.0	284.0	396.0	296.2	69.8			
Givit	be	(very high)	(very high)	(very high)	(very high)	(very high)	07.0			
OM2	d	561.0	676.0	619.0	898.0	688.5	1/17 3			
	u	(very high)	(very high)	(very high)	(very high)	(very high)	14/.5			
OM3	с	350.0	303.0	405.0	609.0	416.8	134.9			
01113		(very high)	(very high)	(very high)	(very high)	(very high)	1,94.0			
OM4	abc	253.0	230.0	196.0	374.0	263.2	77.5			
0114		(very high)	(very high)	(high)	(very high)	(very high)	11.5			
OM5	aha	216.0	242.0	231.0	351.0	260.0	61.6			
01015	abe	(very high)	(very high)	(very high)	(very high)	(very high)	01.0			
OM6	ah	138.0	139.0	176.0	252.0	176.3	53.5			
01110	ab	(medium)	(medium)	(high)	(very high)	(very high)	,,,,			
HG for week		а	а	a	а					
Mean for week		259.3	264.6	284.4	424.1	>	\langle			
SD for week		168.5	202.1	178.3	261.2					
Total mean		308.1								
Total SD	205.8									
LSD _{0,05} for fertilizer	210.2									
LSD _{0,05} for week		303.4								

HG – homogenous groups

Figure 9. Interactions between the fertilizer combination and the week of the experiment on the rate of release of available form of potassium (generated using Statgraphics Stratus)

trient in comparison to compost A and compost B used to form them (Tab. 2) Other granulated organic-mineral fertilizers were formed using ammonium nitrate (for OM4), ammonium sulfate (for OM6) and composts (for OM4, OM5 and OM6). The differences between them were statistically significant (LSD_{0.05} for factor 129.49, two homogenous groups, the first: OM1, OM2, OM3, mean 467.17 +/- 203.88, the second: OM4, OM5 and OM6, mean 233.17 +/- 72.25). Most potassium was applied on the objects fertilized with OM2, less on objects with OM1 and OM3, and the least on objects with OM4, OM5 and OM6 (Tab. 3). Both composts were characterized by a similar impact on the rate of release of this macronutrient from investigated fertilizers (LSD_{0.05} for factor 152.44, single homogenous group).

New organic-mineral fertilizers were diversified in terms of the rate of granule disintegration. OM1 was characterized by the hardest granules. They were resistant to disintegration. OM2 and OM5 had similar properties. OM3, OM4 and OM6 were characterized by the tendency to easily disintegration (Tab. 9).

Discussion

Fertilizers based on SMS or mixture of SMS and sewage sludge had a positive impact on the change of pH-value of the soil. According to [14] composts had a stronger impact compared to farmyard manure. Organic-mineral fertilizers had a significant influence on the pH-value of the soil. This was already observed in the first week (Tab. 4, Fig. 5). The kind of the compost used to form them strongly differentiates their effect on the deacidification of the soil. OM5 and OM6 (organic-mineral fertilizers containing sewage sludge) differed from other fertilizers in their impact on the pH-value of the soil. This tendency was observed by Szulc *et al.* [14]. Compost based on SMS and sewage sludge had a stronger impact compared to other made exclusively from SMS [14]. This tendency was recorded only for OM3 compared to OM5 and OM6. OM1, OM2 and OM4 formed from SMC and the addition of mineral fertilizers were characterized by a higher influence on the deacidification of the soil (Tab. 4, Fig. 5).

The change of pH-value of soil had positive impact on the soil. Adjust the pH-value of the soil reduces the emission of nitrogen oxides and nutrient leaching. It has a strong influence on the decrease of available forms of trace elements for plants. Adjusting the pH-value has an effect on yielding and growth crops [1].

Nitrogen

The content of nitrate(V) and ammonium in the soil increased after applying new granulated organic-mineral fertilizers. The soil from the control object during the experiment was classified into classes with very low content of these forms of nitrogen in accordance with the normative content of N_{min} developed by [35]. The nitrate(V) content could be classified into the following classes: very high for OM1, OM2, OM4 and OM5, high or very high for OM3 and low or medium for OM6 (Tab. 5) and the ammonium content was very high (Tab. 6). Changes in mineral N on the objects fertilized with OM5 were probably related to the mineralization of organic matter derived from organic matter contained in the compost made of SMS and sewage

Fertilizer weck I I II IV 14 13 1 12 19 big fragmens + 2 smaller ons: 15 big fragmens + 3 smaller ons: 15 big fragmens + 3 smaller ons: 12 big fragmens; 12 big fragmens; 19 big fragmens + 2 smaller ons: 15 big fragmens; 13 big fragmens; 12 big fragmens; And granules, hard to crash, they hard granules, but they broke under the pressure of the nail granules and their fragmens; fragmens; are stable and their tragmens; fragmens; are stable and their tragmens; are stable and tradmens;		The rate of granules disintegration										
I II III IV A 13 11 12 19 big fragments + 2 snaller ons 115 big fragments 12 big fragments 12 big fragments 14 and granules, hard to crush, they of the nail Organoleptic estimation of granules after finishing. very hard granules, hard to crush, they fuel granules, hard to crush, they of the nail very hard granules, bard they book under the pressure of the nail granules after finishing. 38 big fragments 41 big fragments + 1 snaller one 38 big fragments 41 big fragments 38 big fragments 41 big fragments 13 cmuther of granules after finishing. very hard granules, ther one of the nail 49 cmuther of granules after finishing. Mard granules, bur they hooke under the slight pressure of the nail 14 big fragments 13 the organolepric estimation of granules after finishing. very hard granules in the objec. 13 12 12 big fragments 14 big fragments 13 the granules in the objec. granules broke up essly if the nail the number of granules after finishing. 0M3 13 12 13 13 13 13 13 13 14 big fragments 14 big fragments 14 big fragments 14 big	Fertilizer		week									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Ι	II	III	IV							
14 13 11 12 The number of granules and their fragments from the object after finishing 12 big fragments 12 big fragments 19 big fragments + 2 smaller ones 15 big fragments 15 big fragments 12 big fragments 14 dig ranules, hard to crush, they hard granules of the mail sgranules did not break, how in the pressure of the mail with and granules, they did not break whet the pressure of the mail with and pressure of the hard 49 big fragments 40 big fragments 49 big fragments <th></th> <td></td> <td>The number of applied gran</td> <td>ules on the object</td> <td>·</td>			The number of applied gran	ules on the object	·							
OM1 Image: Instance one is the instance of granules and the instance of the nail 12 big fragments + 12 big fragments + 12 big fragments OM1 Image:		14	13	11	12							
OM1 19 big fragments + 2 smaller ones 15 big fragments 12 big fragments Indig granules, hard to crush, drey did not break, but they broke under the pressure of the nail Image granules, did not break, but they broke under the pressure of the nail Image granules, did not break, but they broke under the pressure of the nail Image granules, did not break, but they broke under the pressure of the nail Image granules, did not break, but they broke under the pressure of the nail Image granules, did not break, but they broke under the pressure of the nail Image granules, did not break, but they broke under the pressure of the nail Image granules, did not break, but they broke under the pressure of the nail Image granules, did not break, but they broke under the pressure of the nail Image granules, did not break, but they broke under the sign of the nail Image granules, did not break, but they broke under the sign of the nail Image granules, did not break, but the pressure of the nail Image granules, did not break, but the pressure of the nail Image granules, did not break, but the pressure of the nail Image granules, did not break, but the pressure of the nail Image granules, did not break, but the pressure of the nail Image granules, did not break, but the pressure of the nail Image granules, did not break, but the pressure of the nail Image granules, did not break, but the pressure of the nail Image granules, did not break, but the pressure of the nail Image granules, did not break, but they break under the pressure of the nail Image granules, did not break, but they break under the pressure of the nail Image granules, did not break, but they break under		Т	The number of granules and their fragments from the object after finishing									
Officient Organoleptic estimation of granules after finishing very hard granules, but of the null wery hard granules, but of the null wery hard granules, but or they bens, bur they bens, bur they bens, bightly wery hard granules, they did not break, under the pressure of the null OM2 32 36 33 47 Image of the statistication of granules and their fragments from the object after finishing 49 big fragments 49 big fragments Add granules, bur hard granules, but they broke under the slight pressure of the nail interpretion of granules after finishing interpretion of the nail interpretion of the nail OM3 Image granules, interpretion of granules after finishing interpretion of the nail interpretion of the nail interpretion of granules after finishing OM4 Image granules, interpretion of granules and their fragments from the object Image granules interpretion of granules after finishing interpretion of granules after finishing OM4 Image granules, interpretion of granules and their fragments from the object after finishing Image granules interpretion of granules broke up very easily granules broke up easily granules broke up easily OM4 Image granules, interpretion of granules and their fragments fragments in the object after finishing Imageranules Image granules	OM1	19 big fragments + 2 smaller ones	15 big fragments + 3 smaller ones	15 big fragments	12 big fragments							
hard granules, hard to crash, hey of the nailhard granules, but nailgranules did not break, but of the nailvery hard granules, hey did of the nail3	OIMI	Organoleptic estimation of granules after finishing										
did not break under the pressure of the nail they broke under the pressure of the nail moto break under the pressure they bent slightly not break under the pressure of the nail 0M2 32 36 33 47 0M2 38 big fragments 41 big fragments + 1 smaller one Organoleptic estimation of applied granules and their fragments from the object after finishing 49 big fragments 13 12 12 13 13 12 12 13 13 12 12 13 13 12 12 13 14 big fragments 18 big fragments 18 big fragments 18 big fragments 25 big fragments + 1 smaller one 23 big fragments 18 big fragments 18 big fragments 25 big fragments + 1 smaller one 23 big fragments 18 big fragments 18 big fragments 0CM4 20 24 big fragments 25 big fragments 30 big fragments 13 12 13 12 30 14 12 13 13 12 25 big fragments + 1 smaller one 23 big fragments 18 big		hard granules, hard to crush, they	hard granules, but	grapules did not break but	very hard granules, they did							
of the nail nail The number of applied granules on the object 32 36 33 47 38 big fragments 41 big fragments + 1 smaller one 38 big fragments 49 big fragments hard granules, but they broke under the slight pressure of the nail hard granules, they did not break under the pressure of the nail very hard granules, they did not break under the pressure of the nail 12 13 OM3 25 big fragments + 1 smaller one 25 big fragments 14 big fragments 14 big fragments 18 big fragments 18 big fragments OM4 13 12 13 The number of granules and their fragments for the object after finishing hard granules, but they broke under the pressure of the nail 14 big fragments 18 big fragments 25 big fragments + 1 smaller one 25 big fragments 23 big fragments 24 big fragments 25 big fragments + 1 smaller one 25 big fragments 23 big fragments 25 big fragments 0044 14 25 30 15 16 fig fragments 30 big fragments 16 16 fragments 30 big fragments 17 The number of applied granules on the object 30 big fragments 18 16 gragmules broke cally under the pressure of the nail 16		did not break under the pressure	they broke under the pressure of the	they bent slightly	not break under the pressure							
OM2 36 33 47 32 36 33 47 38 big fragments 41 big fragments + 1 smaller one 38 big fragments 49 big fragments Mark granules, but they broke under the slight pressure of the nail hard granules, they did not break under the pressure of the nail very bard granules did not they did not break under the pressure of the nail granules broke up easily they did not break under the pressure of the nail 12 13 OM3 25 big fragments + 1 smaller one 23 big fragments 14 big fragments 18 big fragments Mark granules, but they broke under the pressure of the nail The number of applied granules on the object 18 big fragments 25 big fragments + 1 smaller one 23 big fragments 14 big fragments 18 big fragments 20 24 25 30 The number of applied granules on the object granules broke up easily granules broke up easily granules broke up easily granules broke up easily 6 the nail The number of applied granules on the object 30 big fragments 20 24 25 30 CM44 25 big fragments 30 big fragments 39 big fragments		of the nail	nail	they bent sugarty	of the nail							
32 36 33 47 The number of granules and their fragments from the object after finishing 38 big fragments 49 big fragments 1 hard granules, but they broke under the slight pressure of the nail 18 big fragments 49 big fragments 49 big fragments 0 M2 1 mark granules, but they broke under the slight pressure of the nail 12 13 13 0 M3 1 mumber of granules and their fragments from the object after finishing 13 12 13 0 M3 25 big fragments + 1 smaller one 23 big fragments 14 big fragments 18 big fragments 0 M4 25 big fragments + 1 smaller one 23 big fragments 14 big fragments 18 big fragments 0 M4 20 24 25 30 0 The number of granules dubric fragments from the object after finishing 18 big fragments 30 big fragments 0 M4 20 24 25 30 0 The number of granules and their fragments from the object after finishing 10 big fragments 30 big fragments 0 M4 granules broke up under the granules and their fragments from the object after finishing 10 big fragments 30 big fr	Ihe number of applied granules on the object											
The number of granules and their fragments from the object after finishing 38 big fragments 41 big fragments + 1 smaller one 38 big fragments 49 big fragments Ard granules, but they broke under the slipth pressure of the nail hard granules, they did not break under the pressure of the nail very hard granules did not the nail granules broke up easily erery hard granules did not the nail 13 12 12 13 60M3 25 big fragments + 1 smaller one 23 big fragments 14 big fragments 18 big fragments 25 big fragments + 1 smaller one 23 big fragments 14 big fragments 18 big fragments 0M4 20 0.24 25 30 0Tranoleptic estimation of granules and their fragments from the object start finishing 25 big fragments + 1 smaller one 23 big fragments 17 big fragments 18 big fragments 044 granules broke up erer easily 041 The number of granules and their fragments from the object 25 big fragments 30 big fragments 044 20 25 big fragments 30 big fragments		32	36	33	47							
OM2 38 big fragments 41 big fragments + 1 smaller one 38 big fragments 49 big fragments Organoleptic estimation of granules after finishing but they broke under the slight pressure of the nail hard granules, they did not break under the pressure of they did not break under the pressure of the nail very hard granules did not break under the pressure of the nail granules broke up easily granules broke up easily OM3 13 12 12 13 The number of granules and their fragments from the object after finishing thard granules, but they broke under the pressure of the nail 18 big fragments 18 big fragments OM4 25 big fragments + 1 smaller one of the nail 23 big fragments 14 big fragments granules broke up easily granules broke up easily granules broke up easily granules broke up easily granules broke up		T	he number of granules and their fragment	s from the object after finishing								
Indegranules, but they broke under the slight pressure of the nail Indegranules, they did not break under the pressure of the nail Indegranules, they did not break under the pressure of the nail Indegranules, they did not break under the pressure of the nail granules broke up easily OM3 25 big fragments + 1 smaller one 23 big fragments 23 big fragments 14 big fragments 18 big fragments OM4 25 big fragments + 1 smaller one 23 big fragments 14 big fragments 18 big fragments OM4 25 big fragments + 1 smaller one 23 big fragments 14 big fragments 18 big fragments OM4 20 24 25 30 OM4 25 big fragments + 1 smaller one 23 big fragments 25 big fragments 30 big fragments 25 big fragments + 1 smaller one 23 big fragments 25 big fragments 30 big fragments 25 big fragments + 1 smaller one 23 big fragments 25 big fragments 30 big fragments 07ganoleptic estimation of granules after finishing granules broke easily under the pressure of the nail soff granules broke up easily 041 29 39 39 045 10 granules fragments + 1 smaller one 13 big	OM2	38 big fragments	41 big fragments + 1 smaller one	38 big fragments	49 big fragments							
hard granules, hard granules, hard granules, hard granules, hard granules, hard granules, they did not break under the pressure of the nail of the nai			Organoleptic estimation of gra	nules after finishing								
but they broke under the sight pressure of the nail derives the nail derives of the nail derives the nail de		hard granules,	hard granules,	very hard granules did not								
pressure of the nail of the nail the nail the nail Image: Second Se		but they broke under the slight	they did not break under the pressure	break under the pressure of	granules broke up easily							
OM3 13 12 12 13 25 big fragments + 1 smaller one 23 big fragments 14 big fragments 18 big fragments Array of the number of granules and their fragments from the object after finishing 18 big fragments 18 big fragments Array of the number of granules and their fragments from the object after finishing Is big fragments 18 big fragments OM4 25 big fragments + 1 smaller one 23 big fragments granules disintegrated very easily granules broke up very easily granules broke up very easily granules broke up easily OM4 20 24 25 30 The number of granules and their fragments from the object 30 big fragments 30 big fragments 25 big fragments + 1 smaller one 23 big fragments 25 big fragments 30 big fragments 25 big fragments + 1 smaller one granules broke easily under the pressure of the nail the pressure of the nail granules broke easily under the soft granules on the object 41 29 39 39 39 The number of granules and their fragments from the object fragments fragments 44 big fragments 29 big fragments		pressure of the nail	of the nail	the nail								
OM3 13 12 12 12 12 15 OM4 25 big fragments + 1 smaller one 23 big fragments 14 big fragments 18 big fragments Image: Norther of granules and their fragments 18 big fragments 18 big fragments Image: Norther of granules and their fragments 18 big fragments 18 big fragments Image: Norther of granules and their fragments granules broke up very easily granules broke up easily granules broke up easily OM4 20 24 25 30 The number of granules and their fragments from the object 20 24 25 30 The number of granules and their fragments from the object after finishing 30 big fragments 30 big fragments 25 big fragments + 1 smaller one 23 big fragments 25 big fragments 30 big fragments 25 big fragments + 1 smaller one 23 big fragments 25 big fragments 30 big fragments 26 70 70 29 39 39 7 12 29 39 39 7 29 25 31 7 29 25 31 7 29 25 31 7 29 25 31 7 29 25		12	The number of applied gran	ules on the object	12							
$ \begin{array}{ c c c c } \hline \end{tabular} tabular$		15			15							
OM3 25 bg fragments + 1 smaler one 25 bg fragments 14 bg fragments 16 bg fragments Image: hard granules, but they broke under the pressure of the nail Granoleptic estimation of granules after finishing granules broke up very easily granules brok easily up very easily granules	OM3		122 Lis for survey	the object after finishing	10 1:- 6							
Interpretation of granules after finishing Initial of the sail of the nail Initial of the nail Initial of the nail of the number of applied granules on the object Initial of the number of granules and their fragments from the object after finishing Initial of the number of granules and their fragments from the object after finishing Initial of the number of granules and their fragments from the object after finishing OM4 25 big fragments + 1 smaller one 23 big fragments 23 big fragments 30 big fragments 25 big fragments + 1 smaller one 23 big fragments 23 big fragments 30 big fragments granules broke easily under the pressure of the nail granules broke asily under the pressure of the nail soft granules new of the nail Initial of the pressure of the nail 0M5 41 29 39 39 29 big fragments 45 big fragments + 4 smaller ones 42 big fragments 44 big fragments 129 big fragments 45 big fragments + 4 smaller ones 42 big fragments granules disintegrated asily under the pressure of the nail 129 big fragments 14 big fragments + 1 and granules, they did not disintegrated, but they broke easily under the pressure of the nail granules disintegrat		23 big fragments + 1 smaller one	25 big fragments	14 big fragments	18 big fragments							
Inade granules, of the nail Inade granules, indice granules of the nail granules disintegrated very easily granules broke up very easily granules broke up easily OM4 Image of the nail Image of the number of applied granules on the object 30 big fragments OM4 Image of the nail Image of the number of granules and their fragments from the object after finishing 30 big fragments OM4 Image of the nail Image of the nail Image of the nail Image of the nail Image of the nail Image of the nail Image of the nail Image of the nail Image of the nail Image of the nail Image of the		hard grapulas	Organoleptic estimation of gra									
Offer and of the nail pressure (and c) block dip (c) (cash) of the nail pressure (cash) (cas		but they broke under the pressure	grapules disintegrated very easily	granules broke up very easily	granules broke up easily							
OM4 The number of applied granules on the object 20 24 25 30 21 22 30 22 23 30 23 big fragments 25 big fragments 30 big fragments 25 big fragments 30 big fragments 30 big fragments 25 big fragments 30 big fragments 30 big fragments 27 29 39 39 31 big fragments 45 big fragments 44 big fragments 29 24 25 30 29 39 39 39 30 39 39 39 31 big fragments 45 big fragments + 4 smaller ones 42 big fragments 44 big fragments 29 16 7 0 23 10 29 16 7 10 10 10 10 29 39 39 39 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <th></th> <td>of the nail</td> <td>grandles disintegrated very easily</td> <td>grantines broke up very easily</td> <td>granules broke up easily</td>		of the nail	grandles disintegrated very easily	grantines broke up very easily	granules broke up easily							
OM4 20 24 25 30 Image: Constraint of the strength of the stre			The number of applied gran	ules on the object								
OM4 The number of granules and their fragments from the object after finishing 30 big fragments OM4 25 big fragments + 1 smaller one 23 big fragments 25 big fragments 30 big fragments granules broke easily under the pressure of the nail Granoleptic estimation of granules after finishing granules disintegrated easily under the pressure of the nail granules broke easily under the pressure of the nail granules broke easily under the pressure of the nail granules broke easily under the pressure of the nail granules broke easily under the pressure of the nail granules broke easily under the pressure of the nail granules broke easily under the pressure of the nail granules broke easily under the pressure of the nail granules broke easily under the pressure of the nail under the pressure of the nail OM5 29 big fragments 45 big fragments + 4 smaller ones 42 big fragments 44 big fragments OM6 Hard granules, they did not the pressure of the nail bard granules, they did not disintegrated, but they broke easily under the pressure of the nail granules disintegrated easily under the slight pressure of the nail OM6 27 29 25 31 The number of granules and their fragments from the object after finishing 32 big fragments + numerous small fragments OM6		20	24	25	30							
OM4 25 big fragments + 1 smaller one 23 big fragments 25 big fragments 30 big fragments granules broke easily under the pressure of the nail granules broke easily under the pressure of the nail soft granules broke up under the pressure of the nail granules broke easily under the pressure of the nail granules broke easily under the pressure of the nail granules broke easily under the pressure of the nail granules disintegrated easily under the pressure of the nail OM5		The number of granules and their fragments from the object after finishing										
Organoleptic estimation of granules after finishing granules broke easily under the pressure of the nail soft granules broke up under the pressure of the nail granules broke easily under the pressure of the nail granules broke easily under the pressure of the nail granules broke easily under the pressure of the nail granules broke easily under the pressure of the nail granules disintegrated easily under the pressure of the nail 0M5 41 29 39 39 1 29 big fragments 45 big fragments + 4 smaller ones 42 big fragments 44 big fragments 29 big fragments 45 big fragments + 4 smaller ones 42 big fragments 44 big fragments 1 0 0 0 granules after finishing granules disintegrated easily under the pressure of the nail granules were resistant to strong pressure of the nail granules the broke easily under the pressure of the nail granules were resistant to strong pressure of the nail granules the bight pressure of the nail 0M6 1 1 29 25 31 1 1 37 big fragments + numerous small fragments 30 big fragments 32 big fragments + numerous small fragments 31 big fragments 0 0 granules were easily disintegrated under	OM4	25 big fragments + 1 smaller one 23 big fragments 25 big fragments 30 big fragments										
granules broke easily under the pressure of the nailgranules broke easily under the pressure of the nailsoft granules broke up under the pressure of the nailgranules disintegrated easily under the pressure of the nailOM54129393929 big fragments45 big fragments + 4 smaller ones42 big fragments44 big fragments29 big fragments45 big fragments + 4 smaller ones42 big fragments44 big fragments0M50000010 big fragments45 big fragments + 4 smaller ones42 big fragments44 big fragments10 big fragments45 big fragments + 4 smaller ones42 big fragments44 big fragments10 big fragments10 big fragments + 000011 big fragments10 big fragments10 big fragments10 big fragments11 big fragments10 big fragments + numerous small fragments37 big fragments + numerous small fragments30 big fragments32 big fragments + numerous small fragments0M6000000012 big fragments10 big fragments + numerous small fragments37 big fragments + numerous small fragments30 big fragments32 big fragments + numerous small fragments0M6000000013 big fragments0000014 big fragments0000015 big fragments0000016 cm0 <t< td=""><th></th><td colspan="9">Organoleptic estimation of granules after finishing</td></t<>		Organoleptic estimation of granules after finishing										
pressure of the nailpressure of the nailunder the pressure of the nailpressure of the nailpressure of the nailunder the pressure of the nailM541293929 big fragments45 big fragments + 4 smaller ones42 big fragments29 big fragments45 big fragments + 4 smaller ones42 big fragmentsM644 big fragments45 big fragments + 4 smaller ones42 big fragmentsM7Mard granules, they did not disintegrated, but they broke easily under the pressure of the nailgranules were resistant to strong pressure of the nailM727292531 big fragments + numerous small fragments37 big fragments + numerous small fragments30 big fragmentsM66granules were easily disintegrated under the pressure of the nail32 big fragments + numerous small fragmentsGM66granules were easily disintegrated under the pressure of the nail30 big fragmentsM7999M799M799M799M799M799M799M799M799M799M799M799M799M799M799M799M799M799M799M7<		granules broke easily under the	granules broke easily under the	soft granules broke up under	granules disintegrated easily							
OM5 Image: Constraint of the strength of the str		pressure of the nail	pressure of the nail	the pressure of the nail	under the pressure of the nail							
OM5 41 29 39 39 OM5			The number of applied gran	ules on the object	·							
OM5 Image: Constraint of the number of granules and their fragments from the object after finishing 44 big fragments 29 big fragments 45 big fragments + 4 smaller ones 42 big fragments 44 big fragments Ard granules, they did not break under the pressure of the nail hard granules, they did not disintegrated, but they broke easily under the pressure of the nail granules were resistant to strong pressure of the nail granules disintegrated easily under the slight pressure of the nail 27 29 25 31 27 29 25 31 31 big fragments + numerous small fragments 37 big fragments + numerous small fragments 30 big fragments 32 big fragments + numerous small fragments granules were easily disintegrated under the pressure of the nail granules were very easily disintegrated under the pressure of the nail granules were very easily disintegrated under the pressure of the nail		41	29	39	39							
OM5 29 big fragments 45 big fragments + 4 smaller ones 42 big fragments 44 big fragments Mard granules, they did not break under the pressure of the nail hard granules, they did not disintegrated, but they broke easily under the pressure of the nail granules were resistant to strong pressure of the nail granules disintegrated easily under the slight pressure of the nail MAR 27 29 25 31 MAR 27 29 25 31 MAR 31 big fragments + numerous small fragments 37 big fragments + numerous small fragments 30 big fragments 32 big fragments + numerous small fragments 32 big fragments + numerous small fragments Mar granules were easily disintegrated under the pressure of the nail granules were very easily disintegrated under the pressure of the nail granules were very easily disintegrated under the pressure of the nail		Г	he number of granules and their fragment	s from the object after finishing								
Offset Organoleptic estimation of graules after finishing granules after finishing granules after finishing granules disintegrated easily under the slight pressure of the nail hard granules, they did not break under the pressure of the nail hard granules, they did not disintegrated, but they broke easily under the pressure of the nail granules were resistant to strong pressure of the nail granules disintegrated easily under the slight pressure of the nail 27 29 25 31 31 big fragments + numerous small fragments 37 big fragments + numerous small fragments 30 big fragments 32 big fragments + numerous small fragments granules were easily disintegrated under the pressure of the nail granules were very easily disintegrated under the pressure of the nail granules were very easily disintegrated under the pressure of the nail	OM5	29 big fragments	45 big fragments + 4 smaller ones	42 big fragments	44 big fragments							
hard granules, they did not break under the pressure of the nailhard granules, they did not disintegrated, but they broke easily under the pressure of the nailgranules were resistant to strong pressure of the nailgranules disintegrated easily under the slight pressure of the nail0M64272925311272925312137 big fragments + numerous fragments37 big fragments + numerous small fragments30 big fragments32 big fragments + numerous small fragments31 big fragments + numerous small fragments37 big fragments + numerous small fragments30 big fragments32 big fragments + numerous small fragmentsGuest the pressure of the nailgranules were easily disintegrated under the pressure of the nailgranules were very easily disintegrated under the pressure of the nailgranules were very easily disintegrated under the pressure of the nail	OMJ		Organoleptic estimation of gra	nules after finishing								
they did not break under the pressure of the nail disintegrated, but they broke easily under the pressure of the nail granules neter resume to strong pressure of the nail under the slight pressure of the nail 0M6 27 29 25 31 1 27 29 25 31 27 29 25 31 31 big fragments + numerous small fragments 37 big fragments + numerous small fragments 30 big fragments 32 big fragments + numerous small fragments granules were easily disintegrated under the pressure of the nail granules were easily disintegrated under the pressure of the nail granules were very easily disintegrated under the pressure of the nail granules were very easily disintegrated under the pressure of the nail granules were very easily disintegrated under the pressure of the nail granules were very easily disintegrated under the pressure of the nail granules were very easily disintegrated under the pressure of the nail		hard granules,	hard granules, they did not	granules were resistant to	granules disintegrated easily							
pressure of the nail under the pressure of the nail others pressure of the nail nail Pressure of the nail Inail Inail Inail Image: Pressure of the nail Inail Inail Image: Pressure of the nail Image: Pressure of the nail Inail Image: Pressure of the nail Image: Pressure of the nail Image: Pressure of the nail Image: Pressure of the nail Image: Pressure of the nail Image: Pressure of the nail		they did not break under the	disintegrated, but they broke easily	strong pressure of the nail	under the slight pressure of the							
OM6 ²⁷ ²⁹ ²⁵ ³¹ ³¹ ³⁷ ³⁷ ^{big} fragments + numerous and their fragments from the object after finishing ³¹ ^{big} fragments + numerous and their fragments from the object after finishing ³⁰ ^{big} fragments + numerous and their fragments ³⁰ ^{big} fragments ^{big} fragments + numerous ^{constant} ^{constant} ^{constant} ^{constant}}}		pressure of the nail	under the pressure of the nail		nail							
0M6 2/ 29 25 31 0M6 The number of granules and their fragments from the object after finishing 31 big fragments + numerous small fragments 37 big fragments + numerous small fragments 30 big fragments 32 big fragments + numerous small fragments 0M6 Granules were easily disintegrated under the pressure of the nail granules were easily disintegrated under the pressure of the nail granules were very easily disintegrated under the pressure of the nail granules were very easily disintegrated under the pressure of the nail granules were very easily disintegrated under the pressure of the nail			The number of applied gran	ules on the object								
OM6 31 big fragments + numerous small fragments 37 big fragments + numerous small fragments 30 big fragments 32 big fragments + numerous small fragments OM6 31 big fragments + numerous small fragments 37 big fragments + numerous small fragments 30 big fragments 32 big fragments + numerous small fragments granules were easily disintegrated under the pressure of the nail granules were easily disintegrated under the pressure of the nail granules were very easily disintegrated under the pressure of the nail granules were of the nail granules were very easily disintegrated under the pressure of the nail granules were of the nail granules were of the nail granules were of the nail		27	29	25	31							
OM6 31 big fragments + numerous small fragments 37 big fragments + numerous small fragments 30 big fragments 32 big fragments + numerous small fragments OM6 Granules were easily disintegrated under the pressure of the nail Organoleptic estimation of granules after finishing 30 big fragments 32 big fragments + numerous small fragments granules were easily disintegrated under the pressure of the nail granules were easily disintegrated under the pressure of the nail granules were very easily disintegrated under the pressure of the nail granules were very easily disintegrated under the pressure of the nail			he number of granules and their fragment	s from the object after finishing								
One small fragments fragments fragments small fragments Organoleptic estimation of granules after finishing granules were easily disintegrated under the pressure of the nail granules were easily disintegrated under the pressure of the nail granules were very easily disintegrated under the pressure of the nail granules were very easily disintegrated under the pressure of the nail	OM	31 big fragments + numerous	3/ big fragments + numerous small	30 big fragments	32 big fragments + numerous							
granules were easily disintegrated under the pressure of the nail granules were easily disintegrated under the pressure of the nail granules were very easily disintegrated under the pressure of the nail granules were very easily disintegrated under the pressure of the nail	ONIO	small fragments	Tragments	aulas aftar fraisbir a	smail fragments							
granules were easily disintegrated under the pressure of the nail under the pressure of the nail granules were very easily disintegrated pressure of the nail			Organoleptic estimation of gra	arapulas wara wara assilw	granulas wara yarr assily							
under the pressure of the nail under the pressure of the nail pressure of the nail pressure of the nail		granules were easily disintegrated	granules were easily disintegrated	disintegrated under the	disintegrated under the							
		under the pressure of the nail	under the pressure of the nail	pressure of the nail	pressure of the nail							

Table 9. The rate of disintegration of the granules with their organoleptic assessment after the end of the experiment

sludge [36]. According to [37] granulated organic-mineral fertilizers based on sewage sludge were characterized by slow rate of release nitrate(V) and ammonium forms of nitrogen compared to sewage sludge and mineral fertilizers. The lowest content of nitrate(V) was recorded on very acidic soil. These values were higher on objects with a higher class of the pH-value of the soil. The similar tendency was observed by [38]. Their contents depended on the pHvalue of the soil. The nitrate(V) content increased with the increase of the pH-value of the soil [38]. The similar tendency was observed for ammonium, but the opposite trend was observed by [38].

Organic-mineral fertilizers were characterized by the different rate of release of nitrate(V). OM1, OM3, OM5 and OM6 were characterized by the similar release of nitrate(V) in all weeks of the experiment. OM2 had the highest content NO_3^- in the first week and the lowest in the fourth week (Fig. 6). Fertilizers with polyvinyl alcohol were

characterized by a similar impact on the change of nitrate(V) in water extracts in this same time [39]. Objects fertilized with OM4 were characterized by the lowest content NO₃⁻ in the fourth week and the lowest in the first (Fig. 6). The similar tendency was observed by [40]. The rate of release of nitrate(V) from SMS was variable over time. It depended on the kind of wastes used to made fertilizers [40]. Fertilized objects were characterized by a higher content of nitrate(V) between the first and fourth weeks compared to the unfertilized control object. This tendency was observed by [40] in the case of two fertilizers (SMS from *Agaricus bisporus* and SMS from *Pleurotus*) and opposite trend in the third (a mixture of two type of SMS from *Agaricus bisporus* and *Pleurotus*) [40].

The nitrate(V) content on the objects fertilized with OM3 was higher than on objects with OM6 and on the control object without fertilization, but lower compared to other fertilizers (Tab. 6). Similar values from 10.5 to 11.9 mg $\rm NH_4^* \cdot kg^{-1}$ were noted by [21] after harvests on the objects with direct and residual impact of SMS and SMS with mineral fertilizers.

Organic-mineral fertilizers were characterized by the different rate of release of ammonium. OM2 was characterized by the similar release of nitrate(V) in all weeks of the experiment. Objects fertilized with OM1 contained less ammonium in the fourth week compared to the first (Fig. 7). OM3, OM4, OM5 and OM6 had the highest content NH_{4}^{+} in the fourth week and the lowest in the first week (Fig. 7). The similar tendency was observed by [40] (for two fertilizers: SMS from Agaricus bisporus and a mixture of SMS from Agaricus bisporus and Pleurotus, but the opposite trend for SMS from *Pleurotus*) and [39] (for fertilizers with shellac and polyvinyl acetate). The rate of release of ammonium from SMS was variable over time. It depended on the kind of wastes used to made fertilizers [40]. Fertilized objects were characterized by the higher nitrate (V) content between the first and fourth weeks compared to the unfertilized control object. This tendency was observed by [40] for three fertilizers [40]. The ammonium content on the objects fertilized with OM2 and OM4 was the lowest compared to other fertilizers and higher in comparison to the control object without fertilization (Tab. 6). Similar values were noted by the [21] after the harvest.

The control object was characterized by the lower content of nitrate(V) and ammonium (Tab. 5, Tab. 6) compared to the results recorded by [21]. The laboratory experiment with granulated organic-mineral fertilizers based on the soil from the unfertilized object since 1923, but the farm field regularly fertilized was used by Anna Majchrowska-Safaryan [21].

Phosphorus

The content of phosphorus in the soil was increased after applying fertilizers. The soil class of available P was changed on objects with OM2, OM3 and OM6 (Tab. 7). The similar tendency was observed by [14] on objects fertilized with composts based on SMS. The soil class of the investigated macronutrient changed from medium to high. Soil samples in that experiment were collected after the harvest of test plants (after a long time from the application of these organic fertilizers) [14]. Objects fertilized with new organic-mineral fertilizers were characterized by the higher content of available phosphorus compared to the control object without fertilization (Tab. 7). Fertilization with SMS and mineral fertilizers had a stronger influence than with SMS only. This tendency was observed in subsequent years [21].

Potassium

New granulate organic-mineral fertilizers had a higher impact on the content of available form of potassium in the soil compared to the control object. The class of potassium availability was medium or very high compared to the control object without fertilization (Tab. 8). All recorded differences were statistically significant (Fig. 9, Tab. 8). This tendency was observed on objects fertilized with SMC and compost made of SMS and sewage sludge. However, the differences recorded by [14] were not statistically significant. The soil class of available potassium was change from low to medium (in the first and in the second week on objects fertilized with OM6) or very high (on objects fertilized with other fertilizers) (Tab. 8). The supplementation with potassium mineral fertilizer had a significant influence on the content of the investigated macronutrient. The kind of compost used to form granulated organic-mineral fertilizers was characterized by a similar impact on the release of potassium. This tendency was observed for composts based on SMS by [14]. The higher content of available potassium was recorded on the objects with OM2 (Tab. 8). This was due to the highest content of this macronutrient in the fertilizer dose (Tab. 3). This tendency was recorded by [41]. Potassium fertilization caused the increase in the content of the investigated macronutrient in the soil. This macronutrient is characterized by the higher effect on the object with the less content of it in soil [41]. Objects fertilized with new organic-mineral fertilizers were characterized by the higher content of available potassium compared to the control object without fertilization (Tab. 9). Fertilization with SMS and mineral fertilizers had the stronger influence than exclusively SMS. This tendency was observed in subsequent years [21].

Granules of OM3, OM4 and OM6 disintegrated quickly (Tab. 9). This could create a danger of groundwater pollution [23]. OM1 was characterized by the most beneficial durability of the fertilizer pellet form. This is important for the dymanics of macronutrient release. It has a positive effect on yielding and crop health. The rate of release of macronutrients does not pose a risk of groundwater pollution. OM2 and OM5 were similar to OM1 (Tab. 9) [23].

The physical-mechanical parameters of new granulated organic-mineral fertilizers like particle hardness of granules,

abrasion resistance, hygroscopicity evaluation, bulk densities, total porosities, abrasion fragility, crushing strength, critical relative humidity and water sorption from moist porous media should be investigated in laboratory conditions. This is an issue for further research, because their results are important for the implementation of new granulated organic-mineral fertilizers for production. The estimation of these properties could find application in the fertilizer industry. However, these results are important for engineer constructors of machines used in the production and application of granulated organic-mineral fertilizers formed from waste-based composts. days of application. This tendency was observed in the following weeks. The change of the pH-value of the soil had a positive impact on the soil properties. These fertilizers were the source of available macronutrients for plants: nitrate(V), ammonium, phosphorus and potassium. Classes of soil richness in the investigated forms of nitrogen changed to higher. The similar tendency was observed for potassium. The content of phosphorus was higher, although it did not change the soil class. It is recommended to estimated their physical-mechanical properties.

Acknowledgements

The research supported by Warsaw University of Life Sciences, Project No. 505-10-01260050, Poland.

Conclusions

New granulated organic-mineral fertilizers were characterized by rapid deacidification of the soil already after seven

References

- [1] P. Ochal et al. Environmental aspects of soil acidification in Poland. Technical Report (in Polish). IUNG-PIB: Puławy, 2017, pp. 2-32.
- [2] Supreme Audit Office. *Agrochemical servicing of agriculture. Information about the results of the inspection* (in Polish), KRR.410.002.00. 2015 no. 170/2015/P/15/048/KRR. Supreme Audit Office: Warsaw 2015, pp. 5-41.
- [3] Statistic Poland. Statistical Yearbook of Agriculture. Statistic Poland: Warsaw, (in print), pp. 81-84.
- [4] G. Siebielec et al. Report on the third phase of the contract "Monitoring of chemistry of arable soils in Poland in 2015-2017" (in Polish). Institute of Soil Science and Plant Cultivation – State Research Institute: Puławy 2017, pp. 41-44.
- [5] Agriculture Department of Statistic Poland. Farm animals in 2017. Statistic Poland: Warsaw (in print), p. 49.
- [6] The Act of July 10, 2007 on Fertilizers and Fertilization (in Polish) (OJ L no 147. item 1033).
- [7] The Minister of the Agriculture and Rural Development Degree of June 18, 2008 on the implementation of certain provisions of the Act on Fertilizers and Fertilization (in Polish) (OJ L no 119 item 765).
- [8] The Minister of the Economy and Labour Degree of September 7, 2005 on the criteria and procedures for the acceptance of waste for landfill in a given type of landfill (in Polish) (OJ L no 186. item 1553).
- [9] M. Czop and K. Pikoń, Use of casing soil from spent mushroom compost for energy recovery purposes in Poland, Arch. Civil Eng. Environ., vol. 1, pp. 95-102, 2017.
- [10] FAO. "Mushroom and truffle crop (production)". [Online]. Internet: http://www.fao.org/faostat/en/#data/QC, [2017.08.01].
- [11] B. Rutkowska *et al.*, Possibility of agricultural utilization of spent mushroom substrates (in Polish), *Adv. Agri. Sci. Probl. Issu*, vol. 539, pp. 349-356, 2009.
- [12] K. Kucharczak *et al.*, Composting of municipal solid waste as the method of organic matter recovery (in Polish), *Environ. Prot. Nat. Resour.*, vol. 42, pp. 240-254, 2010.
- [13] B. Rutkowska and W. Szulc, Usefulness of compost from mushrooms substrate for fertilization of miscantus plantation, *Fert. Fertil.*, vol. 42, pp. 91-96, 2011.
- [14] W. Szulc *et al.*, Effect of compost from the spent mushroom substrate on maize yield and soil fertility, *Fert. Fertil.*, vol. 43, pp. 39-45, 2011.
- [15] D. Kalembasa and B. Wiśniewska, The utilization of mushroom bed for the recultivation of soils (in Polish), *Soil Sci. Ann.*, vol. 45, no. 2, pp. 209-217, 2004.
- [16] A. Majchrowska-Safaryan and C. Tkaczuk, Possibility to use the spent mushroom substrate in soil fertilization as one of its disposal methods, J. Res. App. Agric. Eng., vol. 58, no. 4, pp. 57-62, 2013.
- [17] E. Kuśmirek *et al.*, The residual effect of fertilizer application of granulated organic-mineral fertilizers formed from spent mushroom substrate on pH of soil, *Chall. Mod. Technol.*, vol. 8, no. 1, pp. 19-22, 2017.
- [18] E. Kuśmirek *et al.*, Effect of granulated organic-mineral fertilizers formed from spent mushroom substrate on the yield and on the content of copper in a test plant (in Polish), *Przem. Chem.*, vol. 95 no. 3, pp. 488-490, DOI: 10.15199/62.2016.3.29, 2016.
- [19] E. Kuśmirek and J. Wrzosek, Granulated organic-mineral fertilizers formed from the spent mushroom substrate. Part 2. Effect of the fertilizers on yield and the magnesium content in the test plants (in Polish), *Przem. Chem.*, vol. 97, no. 9, pp. 1584-1587, DOI: 10. 15199/62.2018.9.40, (in print).
- [20] B. Wiśniewska-Kadżajan and K. Jankowski, Effect of mushroom substrate supplemented with minerals on yield of biomass and protein of Orchard grass (in Polish), Acta Agroph., vol. 22, no. 3, pp. 335-344, 2015.
- [21] A. Majchrowska-Safaryan. "Bed after the cultivation mushroom potential source of affluence of the Luvisol" (in Polish). Ph. D. dissertation, University of Natural Science and Humanities in Siedlce, Poland, 2011.
- [22] D. Kalembasa and B. Wiśniewska, The content of fertilization of bed after mushroom production on the amount some macroelements in *Lolium Multiflorum* (in Polish), *Eng. Ecol.*, vol. 18, pp. 78-79, 2007.
- [23] T. Ciesielczuk *et al.*, Natural adhesives of fertilizer cubes as an element of sustainable plant cultivation (in Polish), *Proceedings of ECOpole*, vol. 10, no. 1, pp. 111-119, 2016, DOI: 10.2429/proc.2016.10(1)013.

The rate of release of macronutrients from new organic-mineral fertilizers

- [24] A. Zahradník and K. Petříková, Effect of alternative organic fertilizers on the nutritional value and yield of head cabbage, *Hort. Sci.* (*Prague*), vol. 34, no. 2, pp. 65-71, 2007.
- [25] J.O. Olaniyi and A.E. Ojetayo, Effect of fertilizer types on the growth and yield of two cabbage varieties, *J. Anim. Plant Sci.*, vol. 12, no. 2, pp. 1573-1582, 2011.
- [26] A. Majchrowska-Safaryan and C. Tkaczuk, Changes in phosphorus content and phosphatases activity in soil fertilized with spent mushroom substrate (in Polish), Acta Agroph., vol. 23, no. 3, pp. 433-444, 2016.
- [27] K. Gondek and B. Filipek-Mazur, Effectiveness of sewage sludge fertilisation as assessed on basis of plant yielding and nutrient utilization (in Polish), *Acta Sci. Pol.*, Formatio Circumiectus, vol. 5, no. 1, pp. 39-50, 2006.
- [28] J. Korzeniowska, Progress in research on controlled-release fertilizers (in Polish), STUDIA I RAPORTY IUNG-PIB, vol. 18, pp. 9-26, 2009.
- [29] FAO 2014. World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Report, 106. Food and Agriculture Organization of the United Nations, Rome.
- [30] PN-R-04028:1997 Chemical-agricultural analysis of soil. The method of sampling and determination of the content of nitrate and ammonium ions in mineral soils (in Polish).
- [31] T. Sosulski *et al.*, Dissolved organic carbon in Luvisol under different fertilization and crop rotation, *Soil Sci. Ann.*, vol. 64, no. 3, pp. 114-119, DOI: 10.2478/ssa-2013-0015, 2013.
- [32] ISO 10390:2005 Soil quality Determination of pH.
- [33] PN-R-04023:1996 Chemical-agricultural analysis of soil. Determination of available phosphorus content in mineral soils.
- [34] PN-R-04022:1996 Chemical-agricultural analysis of soil. Determination of available potassium content in mineral soils.
- [35] E. Fotyma and M. Fotyma, The normative of the N_{MIN}content in the soil and N-NO₃ concentration in the soil solution of arable land in Poland (in Polish), *Fert. Fertil.*, vol. 26 pp. 44-56, 2006.
- [36] A. Harasim *et al.*, Changes in mineral nitrogen of a mineral soil cropped to pasture mixture across different cropping environments (in Polish), *Polish J. Agron.*, vol. 30, pp. 25-32, 2017.
- [37] J. Wiater et al., Preliminary investigation aplicative of granulate fertilizers organic-mineral on base of sludge sewages, *Sci. Pap. Bialystok U. Techn. Sci. Environ. Sci.* vol. 16, no. 2, pp. 233 237, 2003.
- [38] P. Skowron, Nitrogen active forms content at differentiated pH soils in laboratory experiment conditions, Ann. UMCS, Sec. E, vol. 59, no. 1, pp. 363-368, 2004.
- [39] T. Ciesielczuk *et al.*, Dynamic of nitrogen leachate from slow-action fertilizers in a laboratory experiment (in Polish), Ann. Set Environ. Prot., vol. 18, pp. 506-517, 2016.
- [40] C. Paredes *et al.* "Nitrogen mineralisation from spent mushroom substrates during their short-term incubation with calcareous soils", in Conf. Pap. "15TH International Conference. Recycling of agricultural, municipal and industrial residues in agriculture (RAMIRAN)", 2013.
- [41] W. Stępień, Potassium effect depending on its accumulation degree in soil in consequence of long-term fertilization (in Polish), *Soil Sci. Ann.*, vol. 40, no. 1, pp. 129-145, 1989.