PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

High performance type-II InAs/GaSb superlattice infrared photodetectors with a short cut-off wavelength

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Quantum Structure Infrared Photodetectors - QSIP : International Conference 2020/2022 (11 ; 2022 ; Kraków, Poland)
Języki publikacji
EN
Abstrakty
EN
This work investigates the potential of InAs/GaSb superlattice detectors for the shortwavelength infrared spectral band. A barrier detector structure was grown by molecular beam epitaxy and devices were fabricated using standard photolithography techniques. Optical and electrical characterisations were carried out and the current limitations were identified. The authors found that the short diffusion length of ~1.8 µm is currently limiting the quantum efficiency (double-pass, no anti-reflection coating) to 43% at 2.8 µm and 200 K. The dark current density is limited by the surface leakage current which shows generation-recombination and diffusion characters below and above 195 K, respectively. By fitting the size dependence of the dark current, the bulk values have been estimated to be 6.57·10ˉ⁶ A/cm² at 200 K and 2.31·10ˉ⁶ A/cm² at 250 K, which is only a factor of 4 and 2, respectively, above the Rule07.
Twórcy
autor
  • IRnova AB, Isafjordsgatan 22, Kista 164 40, Sweden
autor
  • IRnova AB, Isafjordsgatan 22, Kista 164 40, Sweden
  • School of Electrical Engineering and Computer Science KTH Royal Institute of Technology, Isafjordsgatan 22, Kista 164 40, Sweden
  • IRnova AB, Isafjordsgatan 22, Kista 164 40, Sweden
  • IRnova AB, Isafjordsgatan 22, Kista 164 40, Sweden
autor
  • IRnova AB, Isafjordsgatan 22, Kista 164 40, Sweden
  • IRnova AB, Isafjordsgatan 22, Kista 164 40, Sweden
  • IRnova AB, Isafjordsgatan 22, Kista 164 40, Sweden
  • IRnova AB, Isafjordsgatan 22, Kista 164 40, Sweden
autor
  • IRnova AB, Isafjordsgatan 22, Kista 164 40, Sweden
  • IRnova AB, Isafjordsgatan 22, Kista 164 40, Sweden
Bibliografia
  • [1] Driggers R. G., Hodgkin V. & Vollmerhausen, R.. What good is SWIR? Passive day comparison of VIS, NIR, and SWIR. Proc. SPIE 8706, 87060L (2013). https://doi.org/10.1117/12.2016467
  • [2] Karaca A. C., Ertürk A., Güllü, M. K., Elmas, M. & Ertürk, S. Automatic Waste Sorting Using Shortwave Infrared Hyperspectral Imaging System. in 5th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS) 1-4 (2013). https://doi.org/10.1109/WHISPERS.2013.8080744
  • [3] Ghulam A., Li, Z. L., Qin Q., Yimit, H. & Wang J. Estimating crop water stress with ETM+ NIR and SWIR data. Agric. For. Meteorol. 148, 1679-1695 (2008). https://doi.org/10.1016/j.agrformet.2008.05.020
  • [4] Blackett, M. An overview of infrared remote sensing of volcanic activity. J. Imaging 3, 13 (2017). https://doi.org/10.3390/jimaging3020013
  • [5] Wicks, G. W. et al. Extended-shortwave infrared unipolar barrier detectors. Proc. SPIE 9370, 937023 (2015). https://doi.org/10.1117/12.2083861
  • [6] Liu, Y. et al. High temperature behaviors of 1–2.5 μm extended wavelength In.Ga.As photodetectors on InP substrate. IEEE J. Quantum Electron. 57, 1-7 (2021). https://doi.org/10.1109/JQE.2021.3087324
  • [7] Prineas, J. P., Yager, J., Seyedmohamadi, S. & Olesberg J. T. Leakage mechanisms and potential performance of molecular-beam epitaxially grown GaInAsSb 2.4 μm photodiode detectors. J. Appl. Phys. 103, 104511 (2008). https://doi.org/10.1063/1.2932080
  • [8] Craig, A. P. et al. Short-wave infrared barriode detectors using InGaAsSb absorption material lattice matched to GaSb. Appl. Phys. Lett. 106, 201103 (2015). https://doi.org/10.1063/1.4921468
  • [9] Ko, S.-Y. et al. Comparison of InGaAs and type-II superlatticebased extended SWIR detectors. Proc. SPIE 12107, 1210703 (2022). https://doi.org/10.1117/12.2607834
  • [10] Chiu, T. H., Zyskind, J. L. & Tsang, W. T. Molecular beam epitaxial growth of InGaAsSb on (100) GaSb with emission wavelength in the 2 to 2.5 µm range. J. Electron. Mater. 16, 57-61 (1987). https://doi.org/10.1007/BF02667791
  • [11] Soibel, A. et al. Mid-wavelength infrared InAsSb/InAs nBn detectors and FPAs with very low dark current density. Appl. Phys. Lett. 114, 161103 (2019). https://doi.org/10.1063/1.5092342
  • [12] Delmas, M. et al. HOT SWaP and HD detectors based on Type-II superlattices at IRnova. Proc. SPIE 12107, 121070R (2022). https://doi.org/10.1117/12.2618752
  • [13] Forrai, D. et al. Transitioning large-diameter Type II Superlattice detector wafers to manufacturing. Proc. SPIE 10624, 106240L (2018). https://doi.org/10.1117/12.2311515
  • [14] Höglund, L. et al. Manufacturability of type-II InAs/GaSb superlattice detectors for infrared imaging. Infrared Phys. Technol. 84, 28-32 (2017). https://doi.org/10.1016/j.infrared.2017.03.002
  • [15] Hoang, A. M., Chen, G., Haddadi, A., Abdollahi Pour, S. & Razeghi M. Demonstration of shortwavelength infrared photodiodes based on type-II InAs/GaSb/AlSb superlattices. Appl. Phys. Lett. 100, 211101 (2012). https://doi.org/10.1063/1.4720094
  • [16] Haddadi, A., Chevallier, R., Dehzangi, A. & Razeghi, M. Extended short-wavelength infrared nBn photodetectors based on type-II InAs/AlSb/GaSb superlattices with an AlAsSb/GaSb superlattice barrier. Appl. Phys. Lett. 110, 101104 (2017). https://doi.org/10.1063/1.4978378
  • [17] Dehzangi, A., Haddadi, A., Chevallier, R., Zhang,Y. & Razeghi, M. nBn extended short-wavelength infrared focal plane array. Opt. Lett. 43, 591-594 (2018). https://doi.org/10.1364/ol.43.000591
  • [18] Haddadi, A. et al. High-performance short-wavelength infrared photodetectors based on type-II InAs/InAs1-xSbx/AlAs1-xSbx superlattices. Appl. Phys. Lett. 107, 141104 (2015). https://doi.org/10.1063/1.4932518
  • [19] Cohen-Elias, D. et al. Minority carrier diffusion length for electrons in an extended SWIR InAs/AlSb type-II superlattice photodiode. Appl. Phys. Lett. 111, 201106 (2017). https://doi.org/10.1063/1.5005097
  • [20] Cohen-Elias, D. et al. Short wavelength infrared InAs/InSb/AlSb type-II superlattice photodetector. Infrared Phys. Technol. 84, 82-86 (2017). https://doi.org/10.1016/j.infrared.2017.01.005
  • [21] Shafir, I. et al. Improved performances InAs/AlSb Type-II superlattice photodiodes for eSWIR with Ldiff of 2.4 µm and QE of 38% at 300 K. Infrared Phys. Technol. 105, 103210 (2020). https://doi.org/10.1016/j.infrared.2020.103210
  • [22] Uliel, Y. et al. InGaAs/GaAsSb type-II superlattice based photodiodes for short wave infrared detection. Infrared Phys. Technol. 84, 63-71 (2017). https://doi.org/10.1016/j.infrared.2017.02.003
  • [23] Sugimura, K. et al. High-performance extended SWIR photodetectors using strain compensated InGaAs/GaAsSb type-II quantum wells. Proc. SPIE 10926, 109260E (2019). https://doi.org/10.1117/12.2509148
  • [24] Guo, J. et al. InAs/GaSb superlattices for photodetection in short wavelength infrared range. Infrared Phys. Technol. 52, 124-126 (2009). https://doi.org/10.1016/j.infrared.2009.04.003
  • [25] Gautam, N. et al. Three color infrared detector using InAs/GaSb superlattices with unipolar barriers. Appl. Phys. Lett. 98, 121106 (2011). https://doi.org/10.1063/1.3570687
  • [26] Huang, J. et al. How to use type II InAs/GaSb superlattice structure to reach detection wavelength of 2–3 μm. IEEE J. Quantum Electron. 48, 1322-1326 (2012). https://doi.org/10.1109/JQE.2012.2210390
  • [27] Chen, Y. et al. MOCVD growth of InAs/GaSb type-II superlattices on InAs substrates for short wavelength infrared detection. Infrared Phys. Technol. 105, 103209 (2020). https://doi.org/10.1016/j.infrared.2020.103209
  • [28] Höglund, L. et al. Advantages of T2SL: results from production and new development at IRnova. Proc. SPIE 9819, 98190Z (2016). https://doi.org/10.1117/12.2227466
  • [29] Asplund, C., Marcks von Würtemberg, R. & Höglund, L. Modeling tools for design of type-II superlattice photodetectors. Infrared Phys. Technol. 84, 21-27 (2017). https://doi.org/10.1016/j.infrared.2017.03.006
  • [30] Varshni, Y. P. Temperature dependence of the energy gap in semiconductors. Physica 34, 149-154 (1967). https://doi.org/10.1016/0031-8914(67)90062-6
  • [31] Rhiger, D. R. & Smith, E. P. Carrier Transport in the valence band of nBn III–V superlattice infrared detectors. J. Electron. Mater. 48, 6053-6062 (2019). https://doi.org/10.1007/s11664-019-07319-y
  • [32] Hovel, H. J., Willardson, R. K. & Beer, A. C. Semiconductors and Semimetals. Vol. 11, Solar Cells (Academic Press, New York, 1975).
  • [33] Giard, E., Ribet-Mohamed, I., Delmas, M., Rodriguez, J. B. & Christol, P. Influence of the p-type doping on the radiometric performances of MWIR InAs/GaSb superlattice photodiodes. Infrared Phys. Technol. 70, 103-106 (2015). https://doi.org/10.1016/j.infrared.2014.07.034
  • [34] Soibel, A. et al. Temperature dependence of diffusion length and mobility in mid-wavelength InAs/InAsSb superlattice infrared detectors. Appl. Phys. Lett. 117, 231103 (2020). https://doi.org/10.1063/5.0027230
  • [35] Rhiger, D. R. & Smith, E. P. Infrared absorption near the bandgap in the InAs/InAsSb superlattice. Proc. SPIE 11503, 1150305 (2020). https://doi.org/10.1117/12.2569820
  • [36] Youngdale, E. R., Meyer, J. R., Hoffman, C. A. & Bartoli, F. J. Auger lifetime enhancement in InAs-Ga1-xInxSb superlattices. Appl. Phys. Lett. 64, 3160 (1994). https://doi.org/10.1063/1.111325
  • [37] Taghipour, Z. et al. Temperature-dependent minority-carrier mobility in p-type InAs/GaSb type-II-superlattice photodetectors. Phys. Rev. Appl. 11, 024047(2019). https://doi.org/10.1103/PhysRevApplied.11.024047
  • [38] Ramos, D. et al. Quasi-3-dimensional simulations and experimental validation of surface leakage currents in high operating temperature type-II superlattice infrared detectors. J. Appl. Phys. 132, 204501 (2022). https://doi.org/10.1063/5.0106878
  • [39] Tennant, W. E. “Rule 07” revisited: Still a good heuristic predictor of p/n HgCdTe photodiode performance? J. Electron. Mater. 39, 1030-1035 (2010). https://doi.org/10.1007/s11664-010-1084-9
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bbb64335-6a87-49f5-812a-38d3d8960aa1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.