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Abstract  

This paper is devoted to analysis of the surface nonlinear elastic harmonic waves of four types (Rayleigh and Sto 
neley harmonic waves within the framework of plane strain state; Love and Mozhaev harmonic wave within 
the framework of anti-plane strain state). The nonlinear model is based on introducing the Murnaghan elastic 
poten tial, which includes both geometrical and physical nonlinearities. Each type of surface waves is discussed 

in four steps: statement of the problem, nonlinear wave equations, approximate solution (first two approxima-
tions), so-me conclusions. A nonlinear analysis of waves required many novelties: new variants of the Murna-
ghan poten-tial, new nonlinear wave equations and new nonlinear boundary conditions. The nonlinear wave 
equations were solved by the method of successive approximations. A new approach to analyze the boundary 
conditions is offe- red. Some new nonlinear wave effects are observed theoretically: a wave picture is reached 
by the 2nd harmonic and becomes changing in time of propagation, the wave numbers become depending on 
the initial amplitude.  
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1. Introduction  

The theory of elastic harmonic waves forms the big fragment both linear and nonlinear 

theory of elasticity. Chronologically, the free waves were first studied. Their main charac-
teristics is that they propagate in the space without boundaries. The plane harmonic waves 
have to be referred just to this type of waves [7]. Further, the waves with curvilinear fronts 
(cylindrical, spherical and so on) were studied, where the curvilinear boundary is presen-
ted, on which the waves are generating and then passing to infinity. The surface waves pre-
sent the next, third, group in complexity of theoretical analysis [8]. A necessary here allo-
wance for the influence of interface and a condition of quick attenuation of the wave am-
plitudes while being gone from the boundary, form a more complicate wave picture. 

An intrinsic logics of development of the theory of elastic waves was dictated, at 
least, three lines of the subsequent study of elastic waves. The 1st

 line consists in compli-
cation of the model of elastic deformation (for example, transition from the structural 
model of the 1st order to the models of the 2nd

 order - micropolar, elastic mixture, micro-
morphic and so forth. The 2nd line includes allowance for the initial stresses what is im-
possible in the framework of the linear theory and has many applications. The 3rd line is 
associated with the full allowance for a nonlinearity of deformation and can be divided on 
different sub-lines, part of each is pure theoretical, whereas other one is more applied. 
Among the theoretical sublines, the Moscow, Tallinn, Nizhnii Novgorod, and Kyiv ones 
can be outlined. The shown in this paper analysis is related to the 4th subline. It is based 

on introduction in-to the model a nonlinearity, described by the Murnaghan elastic poten-
tial. Here, some re-sults from analysis of the Rayleigh, Love, Stoneley, and Mozhaev 
waves are shown. The Rayleigh and Stoneley waves are related to the surface waves and 

can be analyzed in the 3D approach. The 2D analysis (a statement in the framework of 
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the plane strain approach) seems the only more convenient for the pilot consideration. 
The Love and Mozhaev waves are related to the surface wave and are analyzed in the 2D 
approach (a statement in the fra-mework of the anti-plane strain approach). 

2. Nonlinear elastic surface Rayleigh wave 

2.1. Statement of the problem 
The case is considered, when an interface is the plane. Then the Cartesian coordinates are 
chosen in the way that interface is described by equation x3 = 0 and an elastic material 
occupies the upper half-space. Let the material is isotropic and the wave propagates along 
the axis Ox1. In this case, the motion becomes not depen-ding on the coordinate x2. 
The mechanical state becomes plane strain state. Consider now the problem of nonlinear 
Rayleigh waves within an approach based on the Murnaghan model of description of 
nonlinearity of elastic deformation. The starting point is then the variant of Murnaghan 
potential [5,7] is chosen 

 ( ) ( ) ( ) ( ) ( )( ){ }2 2 2 2

1,1 3,3 1,1 3,3 1,3 3,11 2 1 2W u u u u u uλ µ= + + + + + +L  

 ( ) ( ) ( ) ( )( )( )3 3

1,1 3,3 1,3 3,1 1,1 3,31 3 3 4A u u u u u u + + + + + +  
L  (1) 

 ( ) ( ) ( ) ( )2 2 2

1,1 3,3 1,1 3,3 1,3 3,1B u u u u u u + + + + +  
 ( ) ( )3

1,1 3,31 3 C u u+ + . 

The next basic formulas represent the components of the Kirchhoff stress tensor, that 
are evaluated from (1) using the rule tnm = (∂W/∂um,n). 

2.2. Nonlinear wave equations 
Substitution of these components into the motion equations 

11,1 31,3 1 13,1 33,3 3;t t u t t uρ ρ+ = + =&& &&  gives two nonlinear equations of Lame type  

 ( ) ( ) ( ) ( )1 1,11 3,13 1,33 1,1 1,112 3 2 2 3u u u u A B C u uρ λ µ λ µ µ λ µ− + − + − = + + + + +  &&  (2) 

 ( )( ) ( )1,1 1,33 1,3 3,11 1,3 3,33 3,3 1,332A B u u u u u u u uµ + + + + + + +   

 ( ) ( ) ( ) ( )1,1 3,13 3,3 3,13 1,3 1,33 3,1 1,132 3 2 3 2
2

A
B C u u u u A B u u u uλ µ λ µ

  + + + + + + + + + + + +       
 

 ( ) ( ) ( ) ( )3,1 3,11 3,1 3,33 3,3 1,112 2 2 .A B u u u u B C u uλ µ λ+ + + + + + + +        

The second equation can be obtained from the first one by a change of indexes 31 ⇔ . 
Each equation involves 12 nonlinear summands. The total number of distinguishing 

sum-mands is 24. A similar increase of nonlinear summands is typical for cylindrical 
waves [8]. 

2.3. Approximate solutions (first two approximations) 
The linear analysis is based on in-troduction of two new functions (potentials), which can 

be determined as solutions of the mutually independent linear wave equations. In 
the nonlinear case, the wave equations are nonlinear and coupled ones. To analyze the 

nonlinear case, let us introduce two potentials by the classical scheme [5,8] 
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 ( ) ( ) ( ) ( ) ( ) ( )1 1 3 1 3 1 3 3 1 3 1 3 1 3,1 ,3 ,3 ,1
, , , , , , ; , , , , , , .u x x t x x t x x t u x x t x x t x x tϕ ψ ϕ ψ= + = −                 (3) 

In the first approximation, these potentials have the form corresponding to harmonic 
wave with frequency ω, wave number kRlin and decaying by the exponential law, when 
being moved away from the plane x1 = 0 [4] 

 
( ) ( )

( ) 2 2 2 2
3 31

(1) (1)
1 3 1 3, , , , , ,

, , .Rlin Rlin L Rlin T

L T

k x k xi k x t k k k k

L T

x x t A EE x x t A EE

E e E e e E e eϕ ψ

ϕ ψ

ω

ϕ ψ

− −− − − − −

= =

= = = = =
 (4) 

The final expressions for the second approximation solution are as follows (below only 
one potential is shown) 

 

( )
( ) ( ) ( )

( ) ( )

( ) ( )

1

2 2 2 2
3 3

2 2
2 2(2) 1 3

1 3 1 3 22
22 2

1 3

2 2
2 21 3

22
22 2

1 3

1
, ,

4 2 4

1

4

Rlin

Rlin L Rlin T

i k x t Rlin L Rlin

L
Rlin L Rlin

k k x k k xL TRlin T Rlin

T
Rlin T Rlin

k k x ik x
x x t x x A e

k k k x k x

k k x ik x
M e M e

k k k x k x

ω
ϕ

ϕ ϕ

ρ
ϕ

λ µ
−

− − − −


− +

= − ×
+  − +



− +
× − +

− +

 (5) 

( )( )
( )

( ) ( )

( )( )2 2 2 2
3

2 2 2 2
1 3

22 2 2 2 2 22 2 2 2 2
1 3

2 41
;

4 16

Rlin L Rlin T
Rlin L Rlin T Rlin k k k k xLT

Rlin L Rlin T Rlin Rlin L Rlin T Rlin

x k k k k ik x
M e

k k k k k x k k k k k x
ϕψ

− − −

− + − + 


− − − − + − +


 

2.4. Some conclusions 

Conclusion 1. The 2nd approximation includes the 2nd harmonic, that is, it includes the 2nd 
harmonic relative to the harmonic wave propagating in direction of the horizontal coordina 
te and to the exponential decay of the wave along the vertical coordinate. New harmonics 
have amplitudes, which depend nonlinearly on coordinates and then increase with increa- 
sing the time of Rayleigh wave propagation. As a result, the 1st harmonic distorts. 
Conclu-sion 2. The dependence of amplitude of the 2nd

 harmonic on the squared corre-
sponding amplitude of the 1st harmonic is standard for the used method within an ap-
proach that the nonlinearity is weak. It has some consequence relative to the 2nd harmon-
ic distortion. 
Conclusion 3. For the pure surface wave (x3 = 0) the 2nd approximation is at beginning 
the zeroth, but for the near-the-surface wave this approximation can introduce the essen- 
tial contribution into the wave picture.   

3. Nonlinear elastic surface Stoneley wave 

3.1. Statement of the problem 
Consider the case, when two nonlinear elastic half-spaces with different densities and 
mechanical properties are separated by a plane and are joined according to the condition 

of full mechanical contact. Choose also the Cartesian coordinates Ox1 x2 x3 and assume 
that an interface is the coordinate plane and is described by equa- tion x3 = 0 [9]. Sup-
pose further that the mechanical state does not depend on coordinate x2 and the transverse 
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horizontal displacement u2 is absent. Then the problem is reduced to analysis of two 
half-planes (upper and lower) with the straight interface. This exhausts  the geometrical 
part of statement of the problem on Stoneley wave. The mechanical part consists in us-
ing the equations of motion for the present case of absence of the transverse horizontal 
displacements. 

This approach is based on introduction of nonlinearity of deformations of both half-
planes by use of the Cauchy-Green nonlinear strain tensor and the Murnaghan potential 

 ( ) ( ) ( ) ( )2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) 1,1 3,3 ( ) 1,1 3,3 1,3 3,1

1 1

2 2
U L U L U L U L U L U L U L

U L U LW u u u u u uλ µ  = + + + + + + 
 

L  (6) 

 ( ) ( ) ( ) ( ) ( )2 2 2 3( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) 1,1 3,3 1,1 3,3 1,3 3,1 ( ) 1,1 3,3

1

3
U L U L U L U L U L U L U L U L

U L U LB u u u u u u C u u + + + + + + +  
L , 

where the superscript U (upper) is used for the upper half-plane and the superscript L 
(lower) is used for the lower half-plane. 

3.2 Nonlinear equations of motion 

These equations are written through the nonsymmet-ric Kirchhoff stress tensor ( )U L
nmt   

 ( ) ( ) ( ) ( ) ( ) ( )
11,1 31,3 ( ) 1 13,1 33,3 ( ) 3;U L U L U L U L U L U L

U L U Lt t u t t uρ ρ+ = + =&& && , (7) 

The Kirchhoff tensors are determined by the formula ( )( ) ( ) ( )
,

U L U L U L
nm m nt W u= ∂ ∂ . 

Let us introduce the potentials like the case (3) 

 
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
1 1 3 1 3 1 3,1 ,3

( ) ( ) ( )
3 1 3 1 3 1 3,3 ,1

, , , , , , ;

, , , , , , .

U L U L U L

U L U L U L

u x x t x x t x x t

u x x t x x t x x t

ϕ ψ

ϕ ψ

   = +   

   = −   
 (8) 

Substitute representations (8) into (7) and obtain a system of two geometrically nonlinear 
equations relative to potentials  

 ( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ,3,1

2B H B H B H B H
B H B H B H B H B Hρ ϕ λ µ ϕ ρ ψ µ ψ   − + ∆ + − ∆ =  && &&  

 
( )

( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ,11 ,111 ,11 ,133 ,33 ,111

( ) ( )
( ) ,33 ,111 ( ) ,11 ,111 ,33 ,133

( 2 ) 3

;

B H B H B H B H B H B H
B H B H

B H B H
B H B H

λ µ ϕ ϕ ψ ψ ψ ψ

λ ϕ ϕ µ ψ ψ ψ ψ

= + − − +

+ + +

L

L

 

 ( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ,1,3

2B H B H B H B H
B H B H B H B H B Hρ ϕ λ µ ϕ ρ ψ µ ψ   − + ∆ − − ∆ =  && &&  (9) 

 
( )

( )
( ) ( ) ,13 ,133 ,13 ,133 ,13 ,111

( ) ,11 ,333 ( ) ,33 ,333 ,11 ,113

( 3 ) 3 2

.

B H B H

B H B H

λ µ ϕ ϕ ψ ψ ϕ ϕ

λ ϕ ϕ µ ψ ψ ψ ψ

= + + + + +

+ + +

L L

L

 

3.3. Approximate solutions (first two approximations) 

Apply now the method of success-ive approximations and choose the 1st approximation 
solution in the form of the classical linear representation of the Stoneley wave. Thus, 
the four potentials have the form of har-monic wave with frequency ω and wave number 
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k. These waves attenuate by the expo-nential law, when they move away from the plane 
x1 = 0 (different for the upper and lo-wer half-planes) 

                       
( ) ( )22

3 1 3 1( ) ( )(1)
1 3( , , ) ,

B B
S L S L S

k k x i k x t x i k x tB B Bx x t A e e A e eω β ω
ϕ ϕϕ

− − − − −= ≡% % K                

(10) 

                    
( ) ( )22

3 1 3 1( ) ( )(1)
1 3( , , ) .

H H
S T S T S

k k x i k x t x i k x tH H Hx x t A e e A e eω β ω
ψ ψψ

+ − − + −= ≡% %K                    

The amplitudes ( ) ( )
3 3( ), ( )B H B HA x A xϕ ψ  have to fulfill the condition of attenuation with 

increasing the distance 3x  and the wave number ks = (ω/vs) has to be determined from 

the additional considerations. 
The second approximation is as follows (only one potential is shown) 

 

( ) ( )

( ) ( ) ( )
( )

2 ( )( )(2) ( )(1) 2
1 3 1 3

( ) ( )

( ) ( )
21 3 ( ) ( )

2 2 2( ) ( ) ( )
1 3

1
, ,

4 2

1

4

B HB H B H

B H B H

B H B H
lin B H L B H

L
B H B H B H
L lin

x x t x x A E

k x ik x
M E

k k x k x

ϕ

ϕ
ϕ

ϕ

ρ
ϕ

λ µ
= ×

+

 +
× − −

+

  

 
( ) ( ) ( )

( )

( )
( )

( ) ( )

21 3 ( ) ( )
2 2 2( ) ( ) ( )

1 3

1 3 ( ) ( ) ( )
2 2 2( ) ( ) ( ) ( ) ( ) ( )

1 3

1

4

2 41
.

2 16

lin B H T B H
T

B H B H B H
T lin

lin B H LT B H B H
L T

B H B H B H B H B H B H
lin lin

k x ik x
M E

k k x k x

x k k ik x
M E E

k k k x k k k x

ψ
ϕ

ψ

ϕ ψ
ϕψ

ϕ ψ ϕ ψ

+
− +

+

+ + 
+ 

 − + +   

 (11) 

3.4. Some conclusions 
Conclusion 1. The 2nd approximation solutions include the 2nd harmonic relative the 1st 
(linear) approximation, that is, it includes the 2nd harmonic relative to harmonic waves 

propagating in direction of the horizontal coordinate and to the exponential decay of 
the wave along the vertical coordinate. New harmonics have amplitudes, which depend 
non-linearly on coordinates and then increase with increasing the Stoneley wave propa-
gation time. As a result, the 1st harmonic distorts. 
Conclusion 2. The characteristic feature of non- linearity is dependence of the 2nd approx-
imation on squared amplitudes and coordinates. This means that the 2nd harmonic can 
dominate with time. 

4. Nonlinear elastic surface Love wave 

4.1. Statement of the problem 
Consider the problem on the Love elastic wave in the clas- sical statement under addi-
tional assumption on nonlinearity of deformation process. From the geometrical point of 
view, the nonlinear problem statement coincides in many parts with the linear one and 
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consists in that the system is considered: the layer of constant thickness defined by con-
dition – h ≤ x1 ≤ 0  and the upper half-space x1 ≥ 0 are described by Cartesian coordi-
nates Ox1x2x3 (the abscissa axis is directed deep into the half-space, the ordinate axis is 
directed along the interface) [1]. 

From point of view of mechanics, the problem includes some initial assumptions: (1) 
It is supposed that the half-space and the layer are filled by nonlinearly elastic materials 
with distinguishing properties (further, the quantities describing the layer and half-space 
are assigned the indexes L and H, respectively). (2) Materials are deformed by the 

Murnaghan model and, therefore, the properties include density ρL(H) and five elastic 

constants λL(H), µL(H), AL(H), BL(H), CL(H). (3) It is supposed also that the half-space and 

the layer are in con ditions of full mechanical contact (equality of displacements and 
stresses at the interface) and the layer lower plane x1 = – h is free of stresses. 

The possibility of propagation of the harmonic plane vertically polarized transverse 
wave is studied under the condition of absence of displacements u1, u2 in longitudinal and 
horizontal directions, respectively. 

The form of Murnaghan potential corresponding to the stated problem is as follows 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
22 2 2 2 4 4 2

3,1 3,2 3,1 3,2 3,1 3,2 3,1 3,2

1 1 1 1 1 1

4 2 2 4 4 4
W u u u u u u u uλ µ   = + + + + + + +     

L  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 4 4 2 2 2

3,1 3,2 3,1 3,2 3,1 3,2 3,1 3,2

1
2 2

8
B u u u u u u u u   + + + + + + +      

L  (12) 

The main feature of representation (12) is only occurrence even degrees of nonzeroth 
components u3,1, u3,2: the 2nd degrees (corresponding to the linear approach), the 4th

 de-
grees (corresponding to the cubically nonlinear approach), and the 6th

 degrees (corre-
sponding to nonlinearity of the 5th order) are presented in (12). 

4.2. Nonlinear wave equation 

The stress tensor is determined by the classical formula tik = (∂W/∂uk,i). Only two t13, t23  

of nine components of the stress tensor are nonzeroth. 
Note the goal is stated to analyze the possibility of propagation in direction Ox1 (at 

the neighborhood of interface) of the wave with unknown amplitude ( )( )
3 1
L Hu x
)

and wave 

number k. Then the wave can be represented in the form  ( ) ( )2( ) ( )
3 3 1

i kx tL H L Hu u x e ω−=
)

. 

If the requirement is formulated that the wave is localized near the interface, that is, it 
has the maximal amplitude at the interface and the amplitude decays essentially with 
increase of the absolute values of x1, then the statement in the framework of linear theo-
ry of elasticity corresponds to the nonlinear statement of the problem on Love wave. Two 
of three equations of motion are degenerated into identities in this problem, whereas 
the third one has a form 13,1 23,2 3t t uρ+ = && ,  which can be transformed into the next nonline-

ar wave equation 

 ( ) ( ) ( ) ( )2 2 2

3 3,11 3,22 1 3,1 3,11 2 3,2 3,11 1 3,2 3,22u u u T u u T u u T u uρ µ− + = + + +&&  
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( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 4 4

2 3,1 3,22 2 3,1 3,2 3,12 1 3,1 3,11 1 3,2 3,22

4 4 3 3

2 3,2 3,11 2 3,1 3,22 3 3,1 3,2 3,12 3 3,1 3,2 3,12

2 2 2 2

4 3,1 3,2 3,11 4 3,2 3,1 3,22

4

,

T u u T u u u F u u F u u

F u u F u u F u u u F u u u

F u u u F u u u

+ + + + +

+ + + + +

+ +

 (13) 

 
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
1 2 1

2 3 4

3 1 4 1 2 , 1 2 , 5 4 ,

1 4 1 4 , 2 3 2 2 , 3 4 2 2 .

T A B T A B F A B C

F A B C F A B C F A B C

λ µ λ µ= + + + = + + + = + +      
= + + = + + = + +

 

The equation (13) contains the nonlinear summands of the 3rd (five summands) and 
the 5th (eight summands) orders. This feature of absence of even order summands is 
the consequence of the problem statement. A similar situation was arisen in the study of 
pla-ne transverse wave in the 3rd approximation [7]. 

Let us save in (13) only the cubic nonlinearity and search the solution by the method 
of successive approximations. 

4.3. Approximate solutions (first two approximations) 

The solution in the framework of first two approximations is as follows 

 for  ( ) [ )2 1, , 0;x x∈ −∞ ∞ ∈ ∞ :      ( ) (1) (2)
3 1 2 3 3, ,H H Hu x x t u u= + =  (14) 

 
( ) ( )

( )

( ) ( ) ( )
( )

2

1
2 21

2

1 2 2 11
33(2)

2 2 2

2 1

1

1

H
T

H

H
Tv v kx

i kx t i kx tkx
H H

H
T

x x v v x ix
L e e K e e

v v x x

ω ωβ
 − −  − −− 

 − +  = +
 − +  

; 

 for ( ) [ ]2 1, , ;0x x h∈ −∞ ∞ ∈ − :   ( ) (1) (2)
3 1 2 3 3, ,L L Lu x x t u u= + =  (15) 

 
( )

( )
( ) ( )

2
3 3

2

1 2 1 12

1
sin 1

241

H
T H L

H s T
LC
T

v v L k
L x x K v v kx

v v

µ
µ

Π

 −   = − + − +     −  

 

 ( ) ( ) ( )2

3 3
2

1 2 1 1cos 1
24

i kx tLH
c T

L k
L x x K v v kx e ω−

Π

   + + − +        
 

 ( ) ( ) ( )2
2 2 3

3 1 3 1sin3 1 cos3 1 i kx tL L
s T c TK v v kx K v v kx e ω−   + − + −        

. 

The solutions (14) and (15) contain the unknown parameters: amplitude LH and wa-
ve number k. If the amplitude can be assumed to be arbitrary according to the fact that 
the Love wave is the running surface wave, then the wave number should be determined 
from the boundary conditions. But for the nonlinear statement these conditions are alrea-
dy nonlinear what enables allowance for effect of nonlinearity on the wave number. 
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4.4. Some conclusions 

Conclusion 1. The wave is dispersive one, because analysis of boundary conditions testi-
fies the nonlinear dependence of phase velocity v on wave number k: (1) For zero value 
of wave number (for infinite wave length), the velocity is equal to the phase velocity of 
plane transverse waves in the half-space H

Tv .  (2) With increasing the wave number, 

the velocity decreases. 
Conclusion 2. The 2nd

 approximation includes the 3rd harmonic relati-ve the 1st (linear) 

approximation, that is, it includes the 3rd harmonic relative to the harmo-nic wave propa-
gating along the horizontal coordinate and to the exponential decay of the wave along the 

ver tical coordinate. These new harmonics have amplitudes, which depend nonlinearly on 

coordinates and then increase with increasing the time of Love wave propa-gation. As 

a result, the 1st harmonic distorts. 
Conclusion 3. The dependence of amplitu- des of the 2nd harmonic on the cubed corre-
sponding amplitudes of the 1st harmonic is standard for the used method within an ap-
proach that the nonlinearity is weak [7].  

5. Nonlinear elastic surface Mozhaev wave 

Analysis of the nonlinear elastic surface wave propagating within the condition of anti-
plane strain state in the half-plane (in contrast to the case of Love wave, where presence 
of layer is predicted) is proposed in [3]. In [2], such a virtual wave was called the Mozha-
ev wave. Unfortunately, the presented in this lecture four cases of harmonic and solitary 
waves do not certificate existence of such a wave. 
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