PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Znaczenie procesu dezynfekcji w zapewnieniu bezpieczeństwa mikrobiologicznego wody przeznaczonej do spożycia przez ludzi

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Role of disinfection process in ensuring microbiological safety of drinking water
Języki publikacji
PL
Abstrakty
PL
Przedstawiono genezę powstania i tradycję stosowania procesu dezynfekcji w systemach uzdatniania wody. Zwrócono uwagę na złożoność i trudności metodyczne dezynfekcji, zaznaczając, że jest ona jednocześnie podstawowym celem technologii uzdatniania wody, zapewniającym jej bezpieczną jakość mikrobiologiczną. Zaprezentowano nowe podejście do procesu dezynfekcji, wynikające z rozszerzenia funkcji i celów tego procesu, jako podstawy bezpieczeństwa jakości wody przeznaczonej do spożycia. Wykazano, że dezynfekcja powinna być integralnym elementem całego systemu zaopatrzenia w wodę, obejmującego zarówno technologię uzdatniania, jak i układ dystrybucji wody. Podejście takie wynika z miejsca dezynfekcji w systemie, jako ogniwa pośredniego między układem technologicznym a siecią wodociągową. Koncepcja ta zakłada wykorzystanie dezynfekcji również jako procesu monitorującego i diagnozującego bezpieczeństwo całego systemu uzdatniania i dystrybucji wody. Zwrócono też uwagę na zadania badawcze towarzyszące projektowaniu i eksploatacji procesu dezynfekcji, w połączeniu z wiarygodną oceną biologicznej stabilności wody w sieci wodociągowej. Przeanalizowano kryteria metodyczne procesu dezynfekcji, wpływające na wybór chemicznych utleniaczy, ich dawek, czasu kontaktu, miejsc dawkowania, a także identyfikację i ograniczanie powstawania produktów ubocznych.
EN
The paper discusses the origins and tradition of disinfection process application in water treatment systems paying special attention to its complexity and methodological problems. Disinfection was presented as the main objective of water treatment technology that guarantees safe microbiological water quality. A new approach to the process of disinfection was proposed as a result of the expansion of its functions and objectives as a foundation for drinking water quality safety. It was demonstrated that disinfection should become an integral part of the whole water supply system, comprising both water treatment technology and distribution system. Such an approach results from the position of disinfection process in the system, as an indirect link between the technological system and distribution network. The concept also assumes use of disinfection to monitor and diagnose safety of the water supply system as a whole. Attention was also paid to the research tasks accompanying design and operation of the disinfection process in combination with a reliable evaluation of biological water stability in water networks. The article presents the analysis of methodological criteria of the disinfection process affecting chemical oxidant and dose selection, contact time, dosing site location as well as by-product identifi cation and reduction in their formation.
Czasopismo
Rocznik
Strony
3--9
Opis fizyczny
Bibliogr. 63 poz., rys., wykr.
Bibliografia
  • 1. S. DEEM, N. FEAGIN: Disinfection data integrity in Washington State. Journal – American Water Works Association 2016, Vol. 108, No. 10, pp. 24–30.
  • 2. Guidelines for Drinking-water Quality, fourth edition. WHO, Geneva 2011.
  • 3. A. A. RINCÓN: Public-private partnerships used to manage water in Mexico: Puebla, a case study. Journal – American Water Works Association 2016, Vol. 108, No. 5, pp. 40–45.
  • 4. T. H. Y. KIM, C. PARK, S. KIM: Water recycling from desalination and purification process of reactive dye manufacturing industry by combined membrane filtration. Journal of Cleaner Production 2005, Vol. 13, pp. 779–786.
  • 5. B. EIDSON: Testing potable reuse messages with a utility university partnership. Journal – American Water Works Association 2015, Vol. 107, No. 11, pp. 54–57.
  • 6. Z. Y. MOVAHED, B. B. MOVAHED: The need for water reuse guidelines for designing and operating membrane facilities. Journal – American Water Works Association 2015, Vol. 107, No. 11, pp. 63–69.
  • 7. U. OLSIŃSKA: Charakterystyka metod zapobiegania powstawaniu bromianów(V) w wodzie przeznaczonej do spożycia (Characteristics of bromate formation prevention methods in water intended for human consumption). Ochrona Środowiska 2017, vol. 39, nr 2, ss. 17–26.
  • 8. Y. HUANG, H. ZHANG, A. ZAMYADI, S. ANDREWS, R. HOFMANN: Predicted impact of aeration on toxicity from trihalomethanes and other disinfection by products. Journal – American Water Works Association 2017, Vol. 109, No. 10, pp. 13–21.
  • 9. J. M. LAINÉ, J. G. IJACANGELO, E. W. CUMMINGS, K. E. CARNS, J. MALLEVIALLE: Influence of bromide on low pressure membrane filtration for controlling DBPs in surface waters. Journal – American Water Works Association 1993, Vol. 85, No. 6, pp. 87–99.
  • 10. M. SELBES, J. BROWN, C. LAUDERDALE, T. KARANFIL: Removal of selected C- and N-DBP precursors in biologically active filters. Journal – American Water Works Association 2017, Vol. 109, No. 3, pp. E73–E84.
  • 11. Z. LIU, Y. CUI, J. CHEN, Z. YAN: The control of bromate formation in ozonation of bromide-containing water. Desalination and Water Treatment 2014, Vol. 52, No. 25–27, pp. 4942–4946.
  • 12. Q. WANG, Z. YANG, J. MA, J. WANG, L. WANG, M. GUO: Study on the mechanism of cerium oxide catalytic ozonation for controlling the formation of bromate in drinking water. Desalination and Water Treatment 2016, Vol. 57, No. 33, pp. 15533–15546.
  • 13. Bromine as a Drinking-water Disinfectant. WHO, Geneva 2018.
  • 14. E. D. KILBOURNE, W. G. SMILLIE [Eds.]: Human Ecology and Public Health. 4th Edition. Macmillan, New York 1969.
  • 15. Alternative Disinfectants and Oxidants Guidance Manual. United States Environmental Protection Agency, 815-R-99-014, 1999.
  • 16 Toxicological Review of Bromate. United States Environmental Protection Agency, EPA/635/R-01/002, Washington DC 2001.
  • 17. 2012 Edition of the Drinking Water Standards and Health Advisories. United States Environmental Protection Agency, EPA/822-5-12-001, Washington DC 2012.
  • 18. L. GEIGER: The value of water in Mali. Journal – American Water Works Association 2015, Vol. 107, No. 10, pp. 46–52.
  • 19. M. JAKARIYA, A. M. FARID: Challenges to improve water and sanitation facilities in Bangladesh. Journal – American Water Works Association 2016, Vol. 108, No. 5, pp. 53–62.
  • 20. M. M. SOZAŃSKI, P. M. HUCK: Badania doświadczalne w rozwoju technologii uzdatniania wody. Monografie Komitetu Inżynierii Środowiska PAN 2007, nr 42.
  • 21. L. D. BOURDON, J. LIGGETT, F. P. SIDARI III, S. TRIANTAFYLLIDOU: Preventing disease from Legionella is a shared responsibility. AWWA Opflow 2019, Vol. 45, No. 2, pp. 10–13.
  • 22. L. C. VERMEULEN, M. van HENGEL, C. KROEZE G. MEDEMA, J. E. SPANIER, M. T. H. van VLIET, N. HOFSTRA : Cryptosporidium concentrations in rivers worldwide. Water Research 2019, Vol. 149, pp. 202–214.
  • 23. R. TFAILY, I. PAPINEAU, R. C. ANDREWS, B. BARBEAU: Application of quantitative microbial risk assessment at 17 Canadian water treatment facilities. Journal – American Water Works Association 2015, Vol. 107, No. 10, pp. E497–E508.
  • 24. P. S. STEWERT, J. W. COSTERTON: Antibiotic resistance of bacteria in biofilms. Lancet 2001, Vol. 358, pp. 135–138.
  • 25. V. J. HARWOOD, A. D. LEVINE, T. M. SCOTT, V. CHIVUKULA, J. LUKASIK, S. R. FARRAH, J. B. ROSE: Validity of the indicator organism paradigm for pathogen reduction in reclaimed water and public health protection. Applied and Environmental Microbiology 2005, Vol. 71, No. 6, pp. 3163–3170.
  • 26. M. J. ADELMAN, M. PHELPS, R. T. HADACEK, O. R. SLOSSER, S. CALVET, J. OPPENHEIMER, J. H. BORCHARDT: Required C×T value for 5-log virus inactivation at full scale. Journal – American Water Works Association 2016, Vol. 108, No. 1, pp. E18–E26.
  • 27. B. KOŁWZAN: Analiza zjawiska biofilmu – warunki jego powstawania i funkcjonowania (Analysis of biofilms – their formation and functioning). Ochrona Środowiska 2011, vol. 33, nr 4, ss. 3–14.
  • 28. M. M. BENJAMIN: Water Chemistry. 2nd Edition. Waveland Press, Inc., Long Grove (USA) 2015.
  • 29. A. OLEJNIK, J. NAWROCKI: Czy woda wodociągowa musi być dezynfekowana chemicznie? (Does drinking water have to be chemically disinfected?). Ochrona Środowiska 2013, vol. 35, nr 4, ss. 3–8.
  • 30. J. J. ROOK: Formation of haloforms during chlorination of natural waters. Water Treatment and Examination 1974, Vol. 23, pp. 234–243.
  • 31. T. A. BELLAR, J. J. LICHTENBERG, R. C. KRONER: The occurrence of organohalides in chlorinated drinking water. Journal – American Water Works Association 1974, Vol. 66, pp. 703–706.
  • 32. T. F. CLARK: DBP Control in an expanding regional water supply system. Journal – American Water Works Association 2016, Vol. 108, No. 7, pp. 43–47.
  • 33. C. C. SAMSON, C. J. SEIDEL, R. S. SUMMERS, T. BARTRAND: Assessment of HAA9 occurrence and THM, HAA speciation in the United States. Journal – American Water Works Association 2017, Vol. 109, No. 7, pp. E288–E301.
  • 34. J. XU, C. HUANG, X. SHI, S. DONG, B. YUAN, T. H. NGUYEN: Role of drinking water biofilms on residual chlorine decay and trihalomethane formation: An experimental and modeling study. Science of The Total Environment 2018, Vol. 642, pp. 516–525.
  • 35. O. N. OZDEMIR, T. BUYRUK: Effect of travel time and temperature on chlorine bulk decay in water supply pipes. Journal of Environmental Engineering 2018, Vol. 144, No. 3.
  • 36. W. SUNG, B. REILLEY-MATTHEWS, D. K. O’DAY, K. HORRIGAN: Modeling DBP formation. Journal – American Water Works Association 2000, Vol. 92, No. 5, pp. 53–63.
  • 37. A. D. GREINER, A. OBOLENSKY, P. C. SINGER: Technical note: Comparing predicted and observed concentrations of DBPs. Journal – American Water Works Association 1992, Vol. 84, pp. 99–102.
  • 38. T. CHAIKET, P. C. SINGER, A. MILES, M. MORAN, C. PALLOTTA: Effectiveness of coagulation, ozonation, and biofiltration in controlling DBPs. Journal – American Water Works Association 2002, Vol. 94, No. 12, pp. 81–95.
  • 39. G. W. HOLDEN: Chlorine dioxide preoxidation for DBP reduction. Journal – American Water Works Association 2017, Vol. 109, No. 7, pp. 36–43.
  • 40. R. ZHAO, D. A. RECKHOW, W. C. BECKER, S. SCHINDLER: Seasonal variation of disinfection by product precursors in a large water supply. Journal – American Water Works Association 2018, Vol. 110, No. 11.
  • 41. E. VESCHETTI, B. CITTADINI, D. MARESCA, G. CITTI, M. OTTAVIANI: Inorganic by-products in waters disinfected with chlorine dioxide. Microchemical Journal 2005, Vol.79, pp. 165–170.
  • 42. W. HIJNEN, E. BEERENDONK, G. MEDEMA: Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review. Water Research 2006, Vol. 40, pp. 3–22.
  • 43. J. P. MALLEY Jr.: Where we’re headed 20 years after UV technology stunned the drinking water industry. Journal – American Water Works Association 2018, Vol. 110, No. 12, pp. 58–60.
  • 44. U. von GUNTEN: Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Research 2003, Vol. 37, pp. 1469–1487.
  • 45. M. B. HEEB, J. CRIQUET, S. G. ZIMMERMANN-STEFFENS, U. von GUNTEN: Oxidative treatment of bromidecontaining waters: Formation of bromine and its reactions with inorganic and organic compounds – a critical review. Water Research 2014, Vol. 48, pp. 15–42.
  • 46. J. SOHN, G. AMY, Y. YOON: Process-train profiles of NOM through a drinking water treatment plant. Journal – American Water Works Association 2007, Vol. 99, No. 6, pp. 145–153.
  • 47. I. FISHER, G. KASTL, F. SHANG, A. SATHASIVAN: Framework for optimizing chlorine and by product concentrations in drinking water distribution systems. Journal – American Water Works Association 2018, Vol. 110, No. 11, pp. 38–49.
  • 48. P. M. HUCK, B. M. COFFEY, M. B. EMELKO, D. D. MAURIZIO, R. M. SLAWSON, W. B. ANDERSON, J. van der OEVER, A. P. DOUGLAS, C. R. O’MELIA: Effects of filter operation on Cryptosporidium removal microbial pathogens. Journal – American Water Works Association 2002, Vol. 94, No. 6, pp. 97–111.
  • 49. B. SIEMBIDA-LÖSCH, W. B. ANDERSON, J. BONSTEEL, P. M. HUCK: Pretreatment impacts on biopolymers in adjacent ultrafiltration plants. Journal – American Water Works Association 2014, Vol. 106, No. 9, pp. E372–E382.
  • 50. D. VACS RENWICK, A. HEINRICH, R. WEISMAN, H. ARVANAGHI, K. ROTERT: Potential public health impacts of deteriorating distribution system infrastructure. Journal – American Water Works Association 2019, Vol. 111 No. 2, pp. 42–53.
  • 51. T. WALSKI: Procedure for hydraulic model calibration. Journal – American Water Works Association 2017, Vol. 109, No. 6, pp. 55–61.
  • 52. I. FISHER, G. KASTL, A. SATHASIVAN: New model of chlorine-wall reaction for simulating chlorine concentration in drinking water distribution systems. Water Research 2017, Vol. 125, 2017, pp. 427–437.
  • 53. A. S. GORZALSKI, G. W. HARRINGTON, O. CORONELL: Modeling water treatment reactor hydraulics using reactor networks. Journal – American Water Works Association 2018, Vol. 110, No. 8, pp. 13–29.
  • 54. P. PAYMENT, E. FRANCO: Clostridium perfringens and somatic coliphages as indicators of the efficiency of drinking water treatment for viruses and protozoan cysts. Applied and Environmental Microbiology 1993, Vol. 59, No. 8, pp. 2418–2424.
  • 55. I. FISHER, G. KASTL, A. SATHASIVAN: A comprehensive bulk chlorine decay model for simulating residuals in water distribution systems. Urban Water Journal 2016, Vol. 14, No. 4, pp. 361–368.
  • 56. E. C. WERT, J. LEW, K. L. RAKNESS: Effect of ozone dissolution systems on ozone exposure and bromate formation. Journal – American Water Works Association 2017, Vol. 109, No. 7, pp. E302–E312.
  • 57. Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water System Using Surface Water Sources. United States Environmental Protection Agency, Washington DC 1991.
  • 58. L. J. ZIMMER, R. M. SLAWSON: Potential repair of Escherichia coli DNA following exposure to UV radiation from both medium- and low-pressure UV sources used in drinking water treatment. Applied Environmental Microbiology 2002, Vol. 68, No. 7, pp. 3293–3299.
  • 59. L. J. ZIMMER, R. M. SLAWSON, P. M. HUCK: Inactivation and potential repair of Cryptosporidium parvum following low- and medium-pressure ultraviolet irradiation. Water Research 2003, Vol. 37, No. 14, pp. 3517–3523.
  • 60. L. J. ZIMMER: Inactivation and potential repair of selected waterborne pathogens exposed to ultraviolet radiation. Master’s Thesis, University of Waterloo, Waterloo (Canada) 2002.
  • 61. O. HOYER: Testing and monitoring the efficacy of UV-disinfection systems – the German DVGW approach. Proceedings of 1st IUVA World Congress, Washington DC 2001.
  • 62. D. URFER, P. M. HUCK, G. A. GAGNON, D. MUTTI, F. SMITH: Modeling enhanced coagulation to improve ozone disinfection. Journal – American Water Works Association 1999, Vol. 91, No. 3, pp. 59–73.
  • 63. E. PHILLIPPI, G. W. HARRINGTON, B. LAU, D. THOMAS, S. RUSSELL: A closer look at filter effluent particles using image-based particle analysis. Proceedings of Membrane Technology Conference, American Water Works Association, Denver 2005.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bbb1d8ae-1437-40f5-be72-358a238d3cf2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.