PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Genesis and stability of accessory phosphates in silicic magmatic rocks: a Western Carpathian case study

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The formation of accessory phosphates in granites reflects many chemical and physical factors, including magma composition, oxidation state, concentrations of volatiles and degree of differentiation. The geotectonic setting of granites can be judged from the distribution and character of their phosphates. Robust apatite crystallization is typical of the early magmatic crystallization of I-type granitoids, and of late magmatic stages when increased Ca activity may occur due to the release of anorthite from plagioclase. Although S-type granites also accumulate apatite in the early stages, increasing phosphorus in late differentiates is common due to their high ASI. The apatite from the S-types is enriched in Mn compared to that in I-type granites. A-type granites characteristically contain minor amounts of apatite due to low P concentrations in their magmas. Monazite is typical of S-type granites but it can also become stable in late I-type differentiates. Huttonite contents in monazite correlate roughly positively with temperature. The cheralite molecule seems to be highest in monazite from the most evolved granites enriched in B and F. Magmatic xenotime is common mainly in the S-type granites, but crystallization of secondary xenotime is not uncommon. The formation of the berlinite molecule in feldspars in peraluminous melts may suppress phosphate precipitation and lead to distributional inhomogeneities. Phosphate mobility commonly leads to the formation of phosphate veinlets in and outside granite bodies. The stability of phosphates in the superimposed, metamorphic processes is restricted. Both monazite-(Ce) and xenotime-(Y) are unstable during fluid-activated overprinting. REE accessories, especially monazite and allanite, show complex replacement patterns culminating in late allanite and epidote formation.
Słowa kluczowe
Czasopismo
Rocznik
Strony
53--65
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr.
Twórcy
autor
  • Geological Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovak Republic
autor
  • Geological Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovak Republic
Bibliografia
  • BEA F., FERSHTATER G., CORRETGÉ L.G., 1992: The geochemistry of phosphorus in granite and the effect of aluminium. Lithos 29, 43–45.
  • BOWIE S.H.U., HORNE J.E.T., 1953: Cheralite, a new mineral of the monazite group. Mineralogical Magazine 30, 93–99.
  • BREITER K., FRÝDA J., LEICHMANN, J., 2002: Phosphorus and rubidium in alkali feldpars: case studies and possible genetic interpretation. In: Breiter K., 2002 (Ed.): Phosphorus- and fluorine-rich fractionated granites. Bulletin of the Czech Geological Survey 77, 93–104.
  • BREITER K., FRÝDA J., SELTMAN R., THOMAS R., 1997: Mineralogical evidence for two magmatic stages in the evolution of an extremely fractionated P-rich rare-metal granite: the Podlesí stock, Krušné Hory, Czech Republic. Journal of Petrology 38, 1723–1739.
  • BROSKA I., SIMAN P., 1998: The breakdown of monazite in the West-Carpathian Veporic orthogneisses and Tatric granites. Geologica Carpathica 49, 161–167.
  • BROSKA I., PETRÍK I., WILLIAMS C.T., 2000: Coexisting monazite and allanite in peraluminious granitoids of the Tribeè Mountains, Western Carpathians. American Mineralogist 85, 22–32.
  • BROSKA, I., KUBIŠ, M., WILLIAMS, C.T., KONEÈNÝ, P. 2002. The composition of rock-forming and accessory minerals from the Gemeric granites (Hnilec area, Gemeric superunit, Western Carpathians). Bulletin of the Czech Geological Survey 7, 147–155.
  • BROSKA I., WILLIAMS C.T., UHER P., KONEÈNÝ P., LEICHMANN J., 2004: The geochemistry of phosphorus in different granite suites of the Western Carpathians, Slovakia: the role of apatite and P-bearing feldspar. Chemical geology 205, 1–15.
  • BROSKA I., WILLIAMS C. T., JANÁK M., NAGY G., 2005: Alteration and breakdown of xenotime-(Y) and monazite-(Ce) in granitic rocks of the Western Carpathians, Slovakia. Lithos 82, 71–83.
  • BROSKA I., HARLOV D., TROPPER P., SIMAN P., 2007: Formation of magmatic titanite and titanite-ilmenite phase relations during granite alteration in the Tribeè mountains, Western Carpathians, Slovakia. Lithos 95, 58–71.
  • BURT, D.M., 1989: Compositional and phase relations among rare earth element minerals. In: Geochemistry and mineralogy of rare earth elements, B.R. Lipin & G.A. McKay (Eds.). Reviews in Mineralogy 21, 298–306.
  • BUDZYŃ B., KONECNÝ P., MICHALIK M., 2006: Breakdown of primary monazite and formation of secondary monazite in gneiss clasts from Gródek at the Jezioro Rożnowskie lake (Poland). Mineralogia Polonica – Special Papers 28, 33–35.
  • CATLOS E., GILLEY L.D., HARRISON T.M., 2002: Interpretation of monazite ages obtained via in situ analysis. Chemical Geology 188, 193–215.
  • CUNEY M., FRIEDRICH M., 1987: Physicochemical and crystal-chemical control on accessory mineral paragenesis in granitoids: Implications for uranium metallogenesis. Bulletin Mineralogie 110, 235–247.
  • FINGER, F., KRENN. E., 2007: Three metamorphic monazite generations in a high-pressure rock from the Bohemian Massif and the potentially important role of apatite in stimulating polyphase monazite growth along a PT loop. Lithos 95, 103–115.
  • FRÝDA J., BREITER K., 1995. Alkali feldspars as a main phosphorus reservoir in rare-metal granites: three examples from the Bohemian Massif (Czech Republic). Terra Nova 7, 315–320.
  • FÖRSTER H.J., 1998a. The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region, Germany. Part I. The monazite-(Ce)-brabantite solid solution series. American Mineralogist 83, 259–272.
  • FÖRSTER, H.J., 1998b. The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region, Germany, Part II. Xenotime. American Mineralogist 83, 1302–1315.
  • GROMET L.P., SILVER L.T., 1983: Rare earth element distributions among minerals in a granodiorite and their petrological implications. Geochimimica Cosmochimica Acta 47, 952–938.
  • HARLOV D.E., FÖRSTER H.J., 2003: Fluid-induced nucleation of (Y+REE)-phosphate minerals within apatite: Nature and experiments. Part II. Fluorapatite. American Mineralogist 88, 1209–1209.
  • HARLOV D.E., WIRTH R., FÖRSTER H.J., 2005: An experimental study of dissolution–reprecipitation in fluorapatite: fluid infiltration and formation of monazite. Contributions to Mineralogy and Petrology 150, 268–286.
  • HEINRICH W., ANDREHS G., FRANZ G., 1997: Monazite-xenotime miscibility gap thermometer. 1. An empirical calibration. Journal of Metamorphic Geology 15, 3–16.
  • HUGHES J.M., RAKOVAN J., 2002: The crystal structure of apatite: Ca5(PO4)3(F,OH,Cl). In: Phosphates. Geochemical, Geobiological, and Materials Importance. Kohn M.J., Rakovan J., Hughes J.M.(Eds.): Reviews of Mineralogy and Geochemistry 48, 1–12.
  • JANOTS E., BRUNET F., GOFFÉ B., POINSSOT C., BYRCHARD M., CEMIC L., 2007: Thermochemistry of monazite-(La) and dissakisite-(La): implications for monazite and allanite stability in metapelites. Contributions to Mineralogy and Petrology 154, 1–14.
  • KRENN E., FINGER F., 2007: Formation of monazite and rhabdophane at the expense of aalanite during Alpine low temperature retrogression of metapelitic basement rocks from Crete, Greece. Microprobe data and geochronological implications. Lithos 95, 130–147
  • KUCHA H., 1980: Continuity in the monazite-huttonite series. Mineralogical Magazine 43, 387–393.
  • LINTHOUT K., 2007: Tripartite division of the system 2 REEPO4 – CaTh(PO4)2 – 2ThSiO4, discreditation of brabantite, and recognition of cheralite as the name for members dominated by CaTh(PO4)2. Canadian Mineralogist 45, 503–508.
  • LONDON D., ÈERNÝ P., LOOMIS J.L., PAN J.J., 1990. Phosphorus in alkali feldspars of rare-element granitic pegmatites. Canadian Mineralogist 28, 771–786.
  • LONDON D., 1992: Phosphorus in S-type magmas: the P2O5 content of feldspars from peraluminious granites, pegmatites and rhyolites. American Mineralogist 77, 126–145.
  • LONDON D., 1998: Phosphorus-rich peraluminious granites. Acta Universitatis Carolinae – Geologica 42, 64–68.
  • MAJKA J., BUDZYŃ B., 2006: Monazite breakdown in metapelites from Wedel Jarlsberg Land, Svalbard – preliminary report. Mineralogia Polonica 37, 61–68.
  • MICHALIK M., SKUBLICKI L., 1999: Phosphate accessory minerals in High Tatra granitoids. Geologica Carpathica 50, Spec. Issue, 123–125.
  • MICHALIK M., POPCZYK R., KUSIAK M., PASZKOWSKI M., 2000: Xenotime zircon intergrowths in the Western Tatra leucogranites. Mineralogical Society of Poland – Special Papers 17, 249–251.
  • NASH W.P., 1972: Apatite chemistry and phosphorus fugacity in a differentiated igneous intrusion. American Mineralogist 57, 877–886.
  • NI Y., HUGHES J.M., MARIANO, A.M., 1995: Crystal chemistry of the monazite and xenotime structures. American Mineralogist 80, 21–26.
  • ONDREJKA M., UHER P., PRŠEK J., OZDÍN D., 2007: Arsean monazite-(Ce) and xenotime-(Y), REE arsenates and carbonates from the Tisovec-Rejkovo rhyolite, Western Carpathians, Slovakia: Composition and substitution in the (REE,Y)XO4 system (X = P, As, Si, Nb, S). Lithos 95, 116–129.
  • PAN Y., 1997: Zircon- and monazite forming metamorphic reactions at Manitouwadge, Ontario. Canadian Mineralogist 35, 105–118.
  • PAN, Y., FLEET M.E., 2002: Compositions of the apatite-group minerals: substitution mechanism and controlling factors. In: Phosphates. Geochemical, Geobiological, and Materials Importance. Kohn M.J., Rakovan J., Hughes J.M. (Eds.). Reviews of Mineralogy and Geochemistry 48, 13–50.
  • PETRÍK I., KONEÈNÝ P., KOVÁÈIK, M., HOLICKÝ, I. 2006: Electron microprobe dating of monazite from the Nizke Tatry Mountains orthogneisses (Western Carpathians, Slovakia). Geologica Carpathica 57, 227–242.
  • PLAŠIENKA, D., GRECULA, P., PUTIŠ, M., HOVORKA, D. & KOVÁC, M., 1997. Evolution and structure of the Western Carpathians: an overview. In: Geological Evolution of the Western Carpathians (eds. P. Grecula, D. Hovorka & M. Putiš), Mineralia Slovaca, Monograph, 1–24.
  • PYLE J.M., SPEAR F.S., RUDNICK R.L. & MCDONOUGH W.F., 2001: Monazite-xenotime and monazite-garnet equilibrium in a prograde pelite sequence. Journal of Petrology 42, 2083–2107.
  • ROSE D., 1980: Brabantite, CaTh[PO4]2, a new mineral of the monazite group. Neues Jahrbuch für Mineralogy, Monatshefte 247–257.
  • ROJKOVIC I., KONEÈNÝ P., NOVOTNÝ L., PUŠKELOVÁ L., STREŠKO V., 1999: Quartz-apatite-REE vein mineralization in early paleozoic rocks of the Gemeric superunit, Slovakia. Geologica Carpathica 50, 215–227.
  • SPEAR F., PYLE J.M., 2002: Apatite, monazite and xenotime in metamorphic rocks. In: Phosphates. Geochemical, Geobiological, and Materials Importance. Kohn M.J., Rakovan J., Hughes J.M.(Eds.): Reviews in Mineralogy and Geochemistry 48, 293–335.
  • UHER P., MALACHOVSKÝ P., DIANIŠKA I., KUBIŠ M., 2001: Rare-element Nb-Ta-W mineralization of the tin-bearing Spiš-Gemer granites, Eastern Slovakia. GeoLines 13, 119–120.
  • WATSON E.B., CAPOBIANCO C.J., 1981: Phosphorus and rare earth elements in felsic magmas. An assesment of the role of apatite. Geochimica Cosmochimica Acta 45, 2349–2358.
  • WATSON E.B., HARRISON, T.M. 1984: What can accessory minerals tell us about felsic magma evolution? A framework for experimental study. Proceedings 27th International Geological Congres 11, 503–520.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bbad8b61-2958-41f6-a3ca-55e70c9b39b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.