PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

A Novel Approach for the Prediction of Electric Spark Sensitivity of Polynitroarenes Based on the Measured Data from a New Instrument

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper introduces two novel correlations for the assessment of the electric spark sensitivity of polynitroarenes based on a new instrument, marked as ESZ KTTV, which gives more reliable experimental data than a previous old system, marked as RDAD. The first correlation used the number of oxygen and chlorine atoms, as well as a correcting function that increases the predicted results based on elemental composition. Since the relationship between the measurements from ESZ KTTV and RDAD is not unequivocal, a second correlation can convert the reported data based on the RDAD system to the ESZ KTTV instrument. The second correlation can be applied to many available predictive methods, and provides the estimated results based on the RDAD instrument. For 34 polynitroarenes, where experimental values from both the RDAD and the ESZ KTTV instruments were available, the values of the root-mean-square deviation (RMSD) for the first and second correlations were 43.9 mJ and 36.0 mJ, respectively. Thus, due to the larger uncertainty in the measured data of the old RDAD system, both correlations provide more reliable data based on the ESZ KTTV instrument.
Rocznik
Strony
65--76
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • Malek-ashtar University of Technology, Department of Chemistry, Shahin-shahr P.O. Box 83145/115, Islamic Republic of Iran
Bibliografia
  • [1] Small-Scale Electrostatic Spark Sensitivity Test, ESD 2008A, A Product of the Company OZM Research, Hrochuv Tynec. 2008 [see on www.ozm.cz/en/sensitivitytests].
  • [2] Zeman, S.; Majzlík, J.; Kočí, J. Electric Spark Sensitivity of Polynitro Arenes. Part I. A Comparison of Two Instruments. Cent. Eur. J. Energ. Mater. 2007, 4(3): 15-24.
  • [3] Zeman, S.; Pelikán, W.; Majzlík, J.; Friedl, Z.; Kočí, J. Electric Spark Sensitivity of Nitramines. Part I. Aspects of Molecular Structure. Cent. Eur. J. Energ. Mater. 2006, 3(3): 27-44.
  • [4] Agrawal, J.P. High Energy Materials: Propellants, Explosives and Pyrotechnics. Wiley-VCH, Cornwall, Great Britain, 2010; ISBN 9783527326105.
  • [5] Klapötke, T.M. Chemistry of High-Energy Mmaterials. 4th ed. Walter de Gruyter GmbH & Co KG, Germany, 2017; ISBN 978-3-11-043933-5.
  • [6] Klapötke, T.M. Energetic Materials Encyclopedia. Walter de Gruyter GmbH & Co KG, 2018; ISBN 978-3110441390.
  • [7] Keshavarz, M.H.; Abadi, Y.H.; Esmaeilpour, K.; Damiri, S.; Oftadeh, M. Introducing Novel Tetrazole Derivatives as High Performance Energetic Compounds for Confined Explosion and as Oxidizer in Solid Propellants. Propellants Explos. Pyrotech. 2017, 42(5): 492-498.
  • [8] Zeman, S.; Jungová, M. Sensitivity and Performance of Energetic Materials. Propellants Explos. Pyrotech. 2016, 41(3): 426-451.
  • [9] Zeman, S.; Valenta, P.; Zeman, V.; Jakubko, J.; Kamensky, Z. Electric Spark Sensitivity of Polynitro Compounds: a Comparison of Some Authors’ Results. Chin. J. Energ. Mater. (Hanneng Cailiao) 1998, 6: 118-122.
  • [10] Zeman, S.; Kočí, J. Electric Spark Sensitivity of Polynitro Compounds: Part IV. A Relation to Thermal Decomposition Parameters. Chin. J. Energ. Mater. (Hanneng Cailiao) 2000, 8(1): 18-26.
  • [11] Kočí, J.; Zeman, V.; Zeman, S. Electric Spark Sensitivity of polynitro Compounds: Part V. A Relationship between Electric Spark and Impact Sensitivities of Energetic Materials. Chin. J. Energ. Mater. (Hanneng Cailiao) 2001, 9(2): 60-65.
  • [12] Zeman, V.; Kočí, J.; Zeman, S. Electric Spark Sensitivity of Polynitro Compounds: Part II. A Correlation with Detonation Velocities of Some Polynitro Arenes. Chin. J. Energ. Mater. (Hanneng Cailiao) 1999, 7: 127-132.
  • [13] Zeman, V.; Kočí, J.; Zeman, S. Electric Spark Sensitivity of Polynitro compounds: Part III. A Correlation with Detonation Velocities of Some Nitramines. Chin. J. Energ. Mater. (Hanneng Cailiao) 1999, 7(4): 172-175.
  • [14] Keshavarz, M.H.; Moghadas, M.H.; Kavosh Tehrani, M. Relationship between the Electrostatic Sensitivity of Nitramines and their Molecular Structure. Propellants Explos. Pyrotech. 2009, 34(2): 136-141.
  • [15] Tan, B.; Li, Z.; Guo, X.; Li, J.; Han, Y.; Long, X. Insight into Electrostatic Initiation of Nitramine Explosives. J. Mol. Model. 2017, 23(1): 10.
  • [16] Türker, L. Contemplation on Spark Sensitivity of Certain Nitramine Type Explosives. J. Hazard. Mater. 2009, 169(1): 454-459.
  • [17] Peng, Q.; Cao, W.; Zhou, W.; He, Z.; Jiang, W.; Chen, W. Electrostatic Hazards Assessment of Nitramine Explosives: Resistivity, Charge Accumulation and Discharge Sensitivity. Cent. Eur. J. Energ. Mater. 2016, 13(3): 755-769.
  • [18] Wang, R.; Sun, L.; Kang, Q.; Li, Z. Predicting the Electric Spark Sensitivity of Nitramines from Molecular Structures via Support Vector Machine. J. Loss Prev. Process Ind. 2013, 26(6): 1193-1197.
  • [19] Keshavarz, M.H. Important Aspects of Sensitivity of Energetic Compounds: A Simple Novel Approach to Predict Electric Spark Sensitivity. In: Explosive Materials: Classification, Composition and Properties (Janssen T. A., Ed.), Nova Science Publishers, New York, 2011, pp. 103-123; ISBN 978-1617611889.
  • [20] Keshavarz, M.H. Theoretical Prediction of Electric Spark Sensitivity of Nitroaromatic Energetic Compounds Based on Molecular Structure. J. Hazard. Mater. 2008, 153(1-2): 201-206.
  • [21] Zhi, C.; Cheng, X.; Zhao, F. The Correlation between Electric Spark Sensitivity of Polynitroaromatic Compounds and their Molecular Electronic Properties. Propellants Explos. Pyrotech. 2010, 35(6): 555-560.
  • [22] Keshavarz, M.H.; Motamedoshariati, H.; Moghayadnia, R.; Ghanbarzadeh, M.; Azarniamehraban, J. Prediction of Sensitivity of Energetic Compounds with a New Computer Code. Propellants Explos. Pyrotech. 2014, 39(1): 95-101.
  • [23] Keshavarz, M.H.; Pouretedal, H.R.; Semnani, A. A Simple Way to Predict Electric Spark Sensitivity of Nitramines. Indian J. Eng. Mater. Sci. 2008, 15(6): 505-509.
  • [24] Keshavarz, M.H.; Pouretedal, H.R.; Semnani, A. Reliable Prediction of Electric Spark Sensitivity of Nitramines: A General Correlation with Detonation Pressure. J. Hazard. Mater. 2009, 167(1): 461-466.
  • [25] Wang, G.X.; Xiao, H.M.; Xu, X.J.; Ju, X.H. Detonation Velocities and Pressures, and their Relationships with Electric Spark Sensitivities for Nitramines. Propellants Explos. Pyrotech. 2006, 31(2): 102-109.
  • [26] Keshavarz, M.H. Relationship between the Electric Spark Sensitivity and Detonation Pressure. Indian J. Eng. Mater. Sci. 2008, 15(3): 281-286.
  • [27] Keshavarz, M.H.; Ghaffarzadeh, M.; Omidkhah, M.R.; Farhadi, K. New Correlation between Electric Spark and Impact Sensitivities of Nitramine Energetic Compounds for Assessment of Their Safety. Z. Anorg. Allg. Chem. 2017, 643(19): 1227-1231.
  • [28] Zohari, N.; Seyed-Sadjadi, S.A.; Marashi-Manesh, S. The Relationship between Impact Sensitivity of Nitroaromatic Energetic Compounds and their Electrostatic Sensitivity. Cent. Eur. J. Energ. Mater. 2016, 13(2): 427-443.
  • [29] Keshavarz, M.H.; Zohari, N.; Seyedsadjadi, S.A., Relationship between Electric Spark Sensitivity and Activation Energy of the Thermal Decomposition of Nitramines for Safety Measures in Industrial Processes. J. Loss Prev. Process Ind. 2013, 26(6): 1452-1456.
  • [30] Zeman, S. A New Aspect of Relationships between Electric Spark Sensitivity and Thermal Stability of Some Polynitro Arenes. Chin. J. Energ. Mater. (Hanneng Cailiao) 2008, 16(6): 652-658.
  • [31] Zohari, N.; Keshavarz, M.H.; Seyedsadjadi, S.A. A Novel Method for Risk Assessment of Electrostatic Sensitivity of Nitroaromatics through Their Activation Energies of Thermal Decomposition. J. Therm. Anal. Calorim. 2014, 115(1): 93-100.
  • [32] Zeman, S. Characteristics of Thermal Decomposition of Energetic Materials in a Study of Their Initiation Reactivity. In: Handbook of Thermal Analysis and Calorimetry, vol. 6, (Vyazovkin S.; Koga N.; Schick C., Eds.), 2018, pp. 573-612; ISBN 978-0-444-64062-8.
  • [33] Keshavarz, M.H.; Keshavarz, Z. Relation between Electric Spark Sensitivity and Impact Sensitivity of Nitroaromatic Energetic Compounds. Z. Anorg. Allg. Chem. 2016, 642(4): 335-342.
  • [34] Keshavarz, M.H.; Ghaffarzadeh, M.; Omidkhah, M.R.; Farhadi, K. Correlation between Shock Sensitivity of Nitramine Energetic Compounds based on Smallscale Gap Test and Their Electric Spark Sensitivity. Z. Anorg. Allg. Chem. 2017, 643(24): 2158-2162.
  • [35] Ferdowsi, M.; Yazdani, F.; Omidkhah, M.R.; Keshavarz, M.H. Reliable Prediction of Shock Sensitivity of Energetic Compounds based on Small-scale Gap Test through Their Electric Spark Sensitivity. Z. Anorg. Allg. Chem. 2018, 644: 888-892.
  • [36] Keshavarz, M.H.; Klapötke, T.M.; Sućeska, M. Energetic Materials Designing Bench (EMDB), Version 1.0. Propellants Explos. Pyrotech. 2017, 42(8): 854-856.
  • [37] Zeman, S.; Friedl, Z.; Kočí, J. Electric Spark Sensitivity of Polynitro Arenes. Part II. Aspects of the Molecular Structure with Utilization of the Net Charges of Nitro Groups. Cent. Eur. J. Energ. Mater. 2007, 4(4): 23-31.
  • [38] Nazari, B.; Keshavarz, M.H.; Jafari, M.; Jafari, F. A Novel Approach for Prediction of Sensitivity toward the Electrical Discharge of Quaternary Ammonium-based Energetic Ionic Liquids or Salts. Z. Anorg. Allg. Chem. 2018, 644: 1153-1157.
  • [39] Palm, W.J. Introduction to MATLAB 7 for Engineers. McGraw-Hill: New York, 2005; ISBN 0072922427.
  • [40] Keshavarz, M.H.; Klapötke, T.M. The Properties of Energetic Materials: Sensitivity, Physical and Thermodynamic Properties. Walter de Gruyter GmbH & Co KG, 2017; ISBN 978-3-11-052188-7.
  • [41] Billo, E.J. Excel for Chemists: A Comprehensive Guide. 2nd ed., Wiley, New York, 2001; ISBN: 978-0-471-46080-0.
  • [42] Al-Fahemi, J.H.; Albis, N.A.; Gad, E.A.M. QSPR Models for Octane Number Prediction. J. Theor. Chem. 2014, 2014, Article ID 520652.
  • [43] Keshavarz, M.H.; Bashavard, B.; Goshadro, A.; Dehghan, Z.; Jafari, M. Prediction of Heats of Sublimation of Energetic Compounds Using Their Molecular Structures. J. Therm. Anal. Calorim. 2015, 120(3): 1941-1951.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bbad27e1-85c6-4070-b90a-f3cccf18b8ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.