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Abstract. We study the complete f -moment convergence for arrays of row-
wise random variables satisfying a Rosenthal type moment inequality, and
then establish general results on the complete moment convergence and
complete convergence for partial sums and weighted sums of arrays of row-
wise random variables. As applications, we further describe the statistical
properties of complete f -moment convergence in both semiparametric re-
gression models and simple linear errors-in-variables models. The asymp-
totic properties for estimators are established. We also provide some simu-
lations to verify the validity of the theoretical results.
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1. INTRODUCTION

Limit theory is an important research direction of probability theory and mathe-
matical statistics, which mainly concerns the convergence of random variable se-
quences and sequences of distribution functions. In this work, we study a new type
of convergence called complete f -moment convergence, which is more general
and much stronger than both complete convergence and complete moment conver-
gence. First of all, we recall some classical convergence concepts.

1.1. Classical convergence concepts. The concept of complete convergence was
introduced by Hsu and Robbins (1947) as follows:
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DEFINITION 1.1. A sequence {Xn, n ­ 1} of random variables converges
completely to the constant C if for any ε > 0,

∞∑
n=1

P (|Xn − C| > ε) <∞.

By the Borel–Cantelli lemma, this implies that Xn → C almost surely and
thus complete convergence is stronger than almost sure convergence. As complete
convergence is an important tool in establishing almost sure convergence of ran-
dom variables, this result has been extended by many authors. For example, Hsu
and Robbins (1947) proved that if {X,Xn, n ­ 1} is a sequence of indepen-
dent and identically distributed random variables with EX1 = µ and EX2 < ∞,
then 1

n

∑n
k=1Xk → µ completely; Erdős (1949) gave the corresponding converse

statement; Baum and Katz (1965) studied conditions equivalent to complete con-
vergence; Sung (2010) obtained a complete convergence result for weighted sums
of identically distributed ρ∗-mixing random variables; Wang et al. (2014) investi-
gated complete convergence for arrays of rowwise negatively superadditive depen-
dent (NSD, for short) random variables; Miao et al. (2022) and Chang and Miao
(2023) provided some interesting results on complete convergence for dependent
random variables with general moment conditions, and so forth.

Chow (1988) introduced a more general concept named complete moment con-
vergence:

DEFINITION 1.2. Suppose that {Xn, n ­ 1} is a sequence of random vari-
ables and an > 0, bn > 0, q > 0. We say that {Xn, n ­ 1} converges moment
completely if

∞∑
n=1

anE{b−1n |Xn| − ε}q+ <∞ for all ε > 0,

where a+ = max {0, a}.
Sung (2009) proved that complete moment convergence implies complete con-

vergence. Properties of complete moment convergence have been obtained by
many scholars. For instance, Li and Zhang (2004) investigated the complete mo-
ment convergence of moving average processes under the condition of negative as-
sociation (NA); Qiu and Chen (2014) established complete convergence and com-
plete moment convergence for weighted sums of widely orthant dependent (WOD)
random variables. More results can be found e.g. in Yang et al. (2013), Qiu et al.
(2014), Wang et al. (2014), Wu et al. (2014), Qiu et al. (2017), Ko (2017), Tang et
al. (2017), and Deng and Wang (2017).

Inspired by the concept of complete moment convergence, Wu et al. (2019)
introduced the concept of complete f -moment convergence:

DEFINITION 1.3. Let {Sn, n ­ 1} be a sequence of random variables,
{cn, n ­ 1} be a sequence of positive constants and f : R+ → R+ be an in-
creasing continuous function with f(0) = 0 . We say that {Sn, n ­ 1} converges
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f -moment completely if
∞∑
n=1

cnEf({|Sn| − ε}+) <∞ for all ε > 0.

A particular case of complete f -moment convergence with special choices
of cn, f(t) = t, t ­ 0, and Sn = 1

nα

∑n
k=1Xk, where {Xn, n ­ 1} is a sequence

of independent and identically distributed random variables, has been considered
by Chow (1988, Theorem 2.5).

It is easy to check that complete f -moment convergence implies complete con-
vergence if cn = 1 for all n ­ 1, which was proved by Wu et al. (2019). Thus, com-
plete f -moment convergence is much more general than complete convergence.
Understanding the complete f -moment convergence behavior is crucial for ap-
plications in nonparametric regression models, semiparametric models, and other
complex statistical frameworks. Numerous authors, including Lang et al. (2023),
Wang et al. (2023a), Wang et al. (2023b), Zhou et al. (2023a), Zhou et al. (2023b),
Li et al. (2024), and Zheng et al. (2024), investigated complete f -moment conver-
gence for specific classes of random variables or regression models.

In this paper, we extend these results to suitable sequences of random vari-
ables under milder conditions, providing a more general approach to complete f -
moment convergence. Additionally, we verify through simulations that the specific
sequences of random variables considered in these studies also satisfy our theoret-
ical results.

1.2. Brief review. Recently, our interest has been attracted by the results of Silva
(2020) about convergence of series of moments for rowwise sums of random vari-
ables. The convergence was established by assuming that for any t > 0, the array
of random variables satisfies a Rosenthal type inequality which can be found in
Petrov (1995): there exist sequences {βn, n ­ 1} and {ξn, n ­ 1} of positive
numbers such that for some q > 2,

(1.1) E
∣∣∣ n∑
k=1

[ht(Xn,k)− Eht(Xn,k)]
∣∣∣q

¬ βn
n∑

k=1

E|ht(Xn,k)|q + ξn

[ n∑
k=1

E|ht(Xn,k)|2
]q/2

for any n ­ 1 and t > 0, where

ht(Xn,k) = −tI(Xn,k < −t) +Xn,kI(|Xn,k| ¬ t) + tI(Xn,k > t).

Based on this inequality, Silva (2020) established the following two results on
complete moment convergence for rowwise sums of random variables.

THEOREM A. Let p > 1, and let {Xn,k, 1 ⩽ k ⩽ n, n ⩾ 1} be an array
of random variables with E|Xn,k|p < ∞ for each 1 ⩽ k ⩽ n and n ⩾ 1, and
satisfying (1.1) for q > max{p, 2} and some sequences {βn, n ­ 1}, {ξn, n ­ 1}
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of positive numbers. If {bn, n ­ 1} and {cn, n ­ 1} are real sequences of positive
numbers such that

(a)
∞∑
n=1

n∑
k=1

βncnb
−q
n

bqn∫
0

P (|Xn,k|q > t) dt <∞,

(b)
∞∑
n=1

ξncnb
−p
n

bp−q
n∫
0

( n∑
k=1

t2/(p−q)∫
0

P (X2
n,k > s) ds

)q/2
dt <∞,

(c)
∞∑
n=1

ξncnb
−q
n

( n∑
k=1

b2n∫
0

P (X2
n,k > t) dt

)q/2
<∞,

(d)
∞∑
n=1

n∑
k=1

cn
bn
E|Xn,k|I(|Xn,k| > bn) <∞,

(e)
∞∑
n=1

n∑
k=1

(1 + βn)cnb
−p
n

∞∫
bpn

P (|Xn,k|p > t) dt <∞,

then
∞∑
n=1

cnE

[
|
∑n

k=1(Xn,k − EXn,k)|
bn

− ε
]p
+

<∞ for all ε > 0.

THEOREM B. Let {Xn,k, 1 ⩽ k ⩽ n, n ⩾ 1} be an array of random variables
with E|Xn,k| < ∞ for each 1 ⩽ k ⩽ n and n ⩾ 1, and satisfying (1.1) for q > 2
and some sequences {βn, n ­ 1}, {ξn, n ­ 1} of positive numbers. If {bn, n ­ 1}
and {cn, n ­ 1} are sequences of positive numbers such that

(a)
∞∑
n=1

n∑
k=1

βncnb
−q
n

bqn∫
0

P (|Xn,k|q > t) dt <∞,

(b)
∞∑
n=1

ξncnb
−1
n

b1−q
n∫
0

( n∑
k=1

t2/(1−q)∫
0

P (X2
n,k > s) ds

)q/2
dt <∞,

(c)
∞∑
n=1

ξncnb
−q
n

( n∑
k=1

b2n∫
0

P (X2
n,k > t) dt

)q/2
<∞,

(d)
∞∑
n=1

n∑
k=1

cn
bn
E|Xn,k|I(|Xn,k| > bn) <∞,

(e)
∞∑
n=1

n∑
k=1

βncnb
−1
n

∞∫
bn

P (|Xn,k| > t) dt <∞,

then
∞∑
n=1

cnE

[
|
∑n

k=1(Xn,k − EXn,k)|
bn

− ε
]
+

<∞ for all ε > 0.

As we can see, in Theorems A and B only the cases f(t) = tp, t ­ 0, and
f(t) = t were considered in view of the definition of complete f -moment con-
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vergence. The main purpose of the present investigation is to extend the complete
moment convergence to complete f -moment convergence for arrays of random
variables under some more general conditions and give some corollaries and sta-
tistical applications to semiparametric models and errors-in-variables regression
models.

1.3. Stochastic domination

DEFINITION 1.4. An array {Xn,k, 1 ¬ k ¬ n, n ­ 1} of random variables
is said to be stochastically dominated by a random variable X if there exists a
positive constant C such that

P (|Xn,k| > x) ¬ CP (|X| > x)

for all x ­ 0, 1 ¬ k ¬ n and n ­ 1.
The following lemma is an important property of stochastic domination. The

first inequality in the lemma is due to Adler and Rosalsky (1987) and the second
one can be found in Adler et al. (1989).

LEMMA 1.1. Let {Xn,k, 1 ¬ k ¬ n, n ­ 1} be an array of random variables
which is stochastically dominated by a random variable X . For any α > 0 and
b > 0, the following two statements hold:

E|Xn,k|αI(|Xn,k| ¬ b) ¬ C1[E|X|αI(|X| ¬ b) + bαP (|X| > b)],

E|Xn,k|αI(|Xn,k| > b) ¬ C2E|X|αI(|X| > b),

where C1 and C2 are two positive constants.

Throughout this paper, the symbols C and C1 represent positive constants
which may vary in different places. Let I(A) be the indicator function of the setA.
Denote a+ = max {0, a} and log x = lnmax {x, e}, where lnx is the natural
logarithm.

This work is organized as follows: In Section 1, we recall some classical con-
cepts of convergence and the target of the work is determined. The main results and
their proofs are stated in Section 2. Some applications are presented in Section 3.

2. THE MAIN RESULTS AND THEIR PROOFS

At first, we introduce a function

f : R+ → R+,

which is increasing and continuous with f(0) = 0.
Let

g : R+ → R+

be the inverse function of f(t), that is, g(f(t)) = t for t ­ 0. Assume that for
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some positive constants p and δ, the function f : R+ → R+ satisfies the following
condition:

(2.1)
∞∫
f(δ)

g−p(t) dt <∞.

Using the above functions f and g, we present our main results.

THEOREM 2.1. Let p > 1, {Xn,k, 1 ⩽ k ⩽ n, n ⩾ 1} be an array of random
variables with E|Xn,k|p < ∞ for each 1 ⩽ k ⩽ n and n ⩾ 1, and satisfies (1.1)
and (2.1) for q > max {p, 2} and some sequences {βn, n ­ 1}, {ξn, n ­ 1}
of positive numbers. If {bn, n ­ 1} and {cn, n ­ 1} are sequences of positive
numbers such that conditions (a)–(e) in Theorem A hold, then for any ε > 0,

∞∑
n=1

cnEf([|Sn| − ε]+) <∞,

that is, the sequence {Sn, n ­ 1} converges f -moment completely, where Sn =∑n
k=1(Xn,k − EXn,k)/bn for n ­ 1.

Proof. For any ε > 0, we can easily see by Markov’s inequality and (2.1) that

∞∑
n=1

cnEf([|Sn| − ε]+) =
∞∑
n=1

cn
∞∫
0

P (|Sn| > ε+ g(t)) dt

=
∞∑
n=1

cn

f(δ)∫
0

P (|Sn| > ε+ g(t)) dt+
∞∑
n=1

cn
∞∫
f(δ)

P (|Sn| > ε+ g(t)) dt

¬
∞∑
n=1

cn

f(δ)∫
0

P (|Sn| > ε) dt+
∞∑
n=1

cn
∞∫
f(δ)

E[|Sn| − ε]p+
gp(t)

dt

¬ f(δ)
∞∑
n=1

cnP (|Sn| > ε) +
∞∑
n=1

cnE[|Sn| − ε]p+
( ∞∫
f(δ)

g−p(t) dt
)

¬ C
∞∑
n=1

cnP (|Sn| > ε) + C
∞∑
n=1

cnE[|Sn| − ε]p+ =: I1 + I2.

Noting that Sn =
∑n

k=1(Xn,k −EXn,k)/bn, we can get I2 <∞ immediately
by Theorem A. We can also get I1 <∞ because

∞∑
n=1

cnE[|Sn| − ε]p+ =
∞∑
n=1

cn
∞∫
0

P (|Sn| > ε+ t1/p) dt

=
∞∑
n=1

cn
εp∫
0

P (|Sn| > ε+ t1/p) dt+
∞∑
n=1

cn
∞∫
εp
P (|Sn| > ε+ t1/p) dt
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­ εp
∞∑
n=1

cnP (|Sn| > 2ε) +
∞∑
n=1

cn
∞∫
εp
P (|Sn| > ε+ t1/p) dt

­ C
∞∑
n=1

cnP (|Sn| > 2ε).

Hence, the proof is complete. ■

REMARK 2.1. If we take f(t) = ts, t ­ 0, 1 < s < p in Theorem 2.1, then
we can get a series of results which are similar to Theorem A. This means that
Theorem A is a special case of our results.

REMARK 2.2. The function f can be chosen much more generally such as
f(t) satisfying f−1(t) = g(t) ­ Ct1/p(log t)µ/p for some µ > 1. Moreover, it
can be found that many sequences of random variables satisfy (1.1), including ex-
tended negatively dependent (END) random variables, negatively orthant depen-
dent (NOD) random variables, WOD random variables, NSD random variables,
and NA random variables.

If we take cn = 1, bn = nα, 1/2 < α ¬ 1, 1/α < p < 2/α, f(t) = ts,
1 < s < p in Theorem 2.1, and further assume that {βn, n ­ 1} and {ξn, n ­ 1}
are constant sequences, and {Xn,k, 1 ¬ k ¬ n, n ­ 1} is an array of random
variables stochastically dominated by a random variable X , then we can get the
following corollary.

COROLLARY 2.1. Let 1/2 < α ¬ 1, 1 < αp < 2, 1 < s < p, and
{Xn,k, 1 ¬ k ¬ n, n ­ 1} be an array of random variables which is stochasti-
cally dominated by a random variable X with E|X|2/α < ∞, and satisfies (1.1)
for q > max

{
p, 2

2α−1
}

and constant sequences {βn, n ­ 1} and {ξn, n ­ 1}.
Then

∞∑
n=1

E
[
n−α

∣∣∣ n∑
k=1

(Xn,k − EXn,k)
∣∣∣− ε]s

+
<∞ for all ε > 0.(2.2)

In addition,

∞∑
n=1

P
(
n−α

∣∣∣ n∑
k=1

(Xn,k − EXn,k)
∣∣∣ > ε

)
<∞ for all ε > 0,(2.3)

and thus

n−α
n∑

k=1

(Xn,k − EXn,k)
a.s.−−−→

n→∞ 0.(2.4)

Proof. We only need to prove (2.2), since (2.3) follows from (2.2), and (2.4)
follows from (2.3) immediately. To prove (2.2) we only need to verify that con-
ditions (a)–(e) of Theorem A are satisfied, where bn = nα, cn = 1, βn ≡ C,
ξn ≡ C.
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First, note that

E|Xn,k|qI(|Xn,k| ¬ nα)

=
nαq∫
0

P (|Xn,k|q > t, |Xn,k| ¬ nα) dt+
∞∫
nαq

P (|Xn,k|q > t, |Xn,k| ¬ nα) dt

=
nαq∫
0

P (|Xn,k|q > t) dt− nαqP (|Xn,k| > nα).

Hence, by Lemma 1.1 we have

(2.5)
∞∑
n=1

n∑
k=1

n−αq
nαq∫
0

P (|Xn,k|q > t) dt

=
∞∑
n=1

n∑
k=1

n−αq[E|Xn,k|qI(|Xn.k| ¬ nα) + nαqP (|Xn,k| > nα)]

¬ C
∞∑
n=1

n1−αq[E|X|qI(|X| ¬ nα) + nαqP (|X| > nα)]

¬ C
∞∑
n=1

n1−αq
n∑

j=1

E|X|qI((j − 1)α < |X| ¬ jα)

+ C
∞∑
n=1

n
∞∑
j=n

P (jα < |X| ¬ (j + 1)α)

¬ C
∞∑
j=1

E|X|qI((j − 1)α < |X| ¬ jα)
∞∑
n=j

n1−αq

+ C
∞∑
j=1

EI(jα < |X| ¬ (j + 1)α)
j∑

n=1

n

¬ C
∞∑
j=1

E|X|2/αI((j − 1)α < |X| ¬ jα)

+ C
∞∑
j=1

E|X|2/αI(jα < |X| ¬ (j + 1)α)

¬ CE|X|2/α <∞,
which implies the validity of condition (a).

Next, for condition (b), by Lemma 1.1 and E|X|2/α <∞ we have

∞∑
n=1

n−αp
nα(p−q)∫

0

( n∑
k=1

t2/(p−q)∫
0

P (X2
n,k > s) ds

)q/2
dt

¬ C
∞∑
n=1

nq/2−αp
nα(p−q)∫

0

(t2/(p−q)∫
0

P (X2 > s) ds
)q/2

dt

¬ C
∞∑
n=1

nq/2−αp · nα(p−q)(EX2)q/2 ¬ C
∞∑
n=1

n(1/2−α)q <∞.
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For condition (c), in the same manner we have

∞∑
n=1

n−αq
( n∑
k=1

n2α∫
0

P (X2
n,k > t) dt

)q/2
¬ C

∞∑
n=1

n(1/2−α)q
(n2α∫

0

P (X2 > t) dt
)q/2

¬ C
∞∑
n=1

n(1/2−α)q <∞.

From Lemma 1.1 and E|X|2/α <∞ again, we obtain

∞∑
n=1

n∑
k=1

n−αE|Xn,k|I(|Xn,k| > nα)

¬ C
∞∑
n=1

n1−α
∞∑
j=n

E|X|I(jα < |X| ¬ (j + 1)α)

¬ C
∞∑
j=1

j2−αE|X|I(jα < |X| ¬ (j + 1)α)

¬ C
∞∑
j=1

jα(2/α−1)E|X|I(jα < |X| ¬ (j + 1)α)

¬ C
∞∑
j=1

E|X|2/αI(jα < |X| ¬ (j + 1)α)

¬ CE|X|2/α <∞,

which implies the validity of condition (d).
Finally, we will check (e). Under our assumptions, it is easy to find that

∞∑
n=1

n∑
k=1

n−αp
∞∫
nαp

P (|Xn,k|p > t) dt ¬ C
∞∑
n=1

n1−αp
∞∫
nαp

P (|X|p > t) dt

¬ C
∞∑
n=1

n1−αpE|X|pI(|X| > nα)

= C
∞∑
n=1

n1−αp
∞∑
j=n

E|X|pI(jα < |X| ¬ (j + 1)α)

= C
∞∑
j=1

E|X|pI(jα < |X| ¬ (j + 1)α)
j∑

n=1

n1−αp

¬ CE|X|2/α <∞.

Hence, all the conditions of Theorem A have been verified. The desired result (2.2)
follows from Theorem 2.1 immediately. ■

If we further consider a constant sequence {cn,k, 1 ¬ k ¬ n, n ­ 1} in Corol-
lary 2.1 as the weight coefficients, we get the following corollary.
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COROLLARY 2.2. Let 1/2<α¬ 1, 1<αp< 2, 1< s< p, {Xn,k, 1¬ k¬ n,
n­ 1} be an array of random variables which is stochastically dominated by a
random variable X with E|X|2/α <∞ and satisfies (1.1) for q > max

{
p, 2

2α−1
}

and constant sequences {βn, n ­ 1} and {ξn, n ­ 1}. Let {cn,k, 1 ¬ k ¬ n,
n ­ 1} be an array of constants satisfying

max
1¬k¬n

|cn,k| = O(1).

Then
∞∑
n=1

E
[
n−α

∣∣∣ n∑
k=1

cn,k(Xn,k − EXn,k)
∣∣∣− ε]s

+
<∞ for all ε > 0.

In addition,
∞∑
n=1

P
(
n−α

∣∣∣ n∑
k=1

cn,k(Xn,k − EXn,k)
∣∣∣ > ε

)
<∞ for all ε > 0,

and thus

n−α
n∑

k=1

cn,k(Xn,k − EXn,k)
a.s.−−−→

n→∞ 0.

Proof. The proof follows that of Corollary 2.1; all we need to do is replace
Xn,k by cn,kXn,k. Without loss of generality, we assume that 0 < max1¬k¬n |cn,k|
¬ C1 .

First, for condition (a), noting that max1¬k¬n |cn,k| ¬ C1, we can easily get

∞∑
n=1

n∑
k=1

n−αq
nαq∫
0

P (|cn,kXn,k|q > t) dt ¬
∞∑
n=1

n∑
k=1

n−αq
nαq∫
0

P (|C1Xn,k|q > t) dt

=
∞∑
n=1

n∑
k=1

n−αq[E|C1Xn,k|qI(|C1Xn,k| ¬ nα) + nαqP (|C1Xn,k| > nα)]

=
∞∑
n=1

n∑
k=1

n−αqE|C1Xn,k|qI(|C1Xn,k| ¬ nα) +
∞∑
n=1

n∑
k=1

P (|C1Xn,k| > nα)

=: I1 + I2.

For I1, similar to the proof of (2.5), by Lemma 1.1 and E|X|2/α <∞ we have

I1 =
∞∑
n=1

n∑
k=1

n−αqE|C1Xn,k|qI(|C1Xn,k| ¬ nα)

¬
∞∑
n=1

n1−αq[E|C1X|qI(|C1X| ¬ nα) + nαqP (|X| > nα)]

¬
∞∑
n=1

n1−αqE|C1X|qI(|C1X| ¬ nα) +
∞∑
n=1

nP (|X| > nα)

¬ CE|X|2/α <∞.



Complete f -moment convergence for arrays of random variables 97

Next, we will show I2 <∞. Noting that max1¬k¬n |cn,k| ¬ C1 , we have

I2 =
∞∑
n=1

n∑
k=1

P

(
|Xn,k| >

nα

C1

)
¬ C

∞∑
n=1

nP

(
|X| > nα

C1

)
= C

∞∑
n=1

n
∞∑
j=n

P

(
jα

C1
< |X| ¬ (j + 1)α

C1

)
= C

∞∑
j=1

P

(
jα

C1
< |X| ¬ (j + 1)α

C1

)
j∑

n=1

n

= C
∞∑
j=1

j2EI

(
jα

C1
< |X| ¬ (j + 1)α

C1

)
¬ CE|X|2/α <∞.

For condition (b), noting that q > 2
2α−1 means (1/2 − α)q < −1, by Lem-

ma 1.1, max1¬k¬n |cn,k| ¬ C1 and E|X|2/α <∞ we have

∞∑
n=1

n−αp
nα(p−q)∫

0

( n∑
k=1

t2/(p−q)∫
0

P (c2n,kX
2
n,k > s) ds

)q/2
dt

¬ C
∞∑
n=1

nq/2−αp
nα(p−q)∫

0

(t2/(p−q)∫
0

P (X2 > s/C2
1 ) ds

)q/2
dt

¬ C
∞∑
n=1

nq/2−αp · nα(p−q)(EX2)q/2 ¬ C
∞∑
n=1

n(1/2−α)q <∞.

For condition (c), in the same manner we have

∞∑
n=1

n−αq
( n∑
k=1

n2α∫
0

P (c2n,kX
2
n,k > t) dt

)q/2

¬ C
∞∑
n=1

n(1/2−α)q
(n2α∫

0

P (X2 > t/C2
1 ) dt

)q/2

¬ C
∞∑
n=1

n(1/2−α)q(EX2)q/2 ¬ C
∞∑
n=1

n(1/2−α)q <∞.

From Lemma 1.1 and E|X|2/α <∞ again, it is obvious that

∞∑
n=1

n∑
k=1

n−αE|cn,kXn,k|I(|cn,kXn,k| > nα)

¬ C
∞∑
n=1

n∑
k=1

n−αE|Xn,k|I(|Xn,k| > nα/C1)

¬ C
∞∑
n=1

n1−α
∞∑
j=n

E|X|I(jα/C1 < |X| ¬ (j + 1)α/C1) ¬ CE|X|2/α <∞,

which implies the validity of condition (d).
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Finally, we will check (e). Under our assumptions, it is easy to get

∞∑
n=1

n∑
k=1

n−αp
∞∫
nαp

P (|cn,kXn,k|p > t) dt ¬ C
∞∑
n=1

n1−αp
∞∫
nαp

P (|X|p > t/Cp
1 ) dt

¬ C
∞∑
n=1

n1−αpE|X|pI(|X| > nα/C1) ¬ CE|X|2/α <∞.

Hence, all the conditions of Theorem A have been verified. This completes the
proof of the corollary. □

3. STATISTICAL APPLICATIONS

In this section, we will provide some applications to statistical models of the com-
plete convergence results that we established in Section 2.

3.1. Application to semiparametric regression models. Semiparametric regression
was introduced by Engle et al. (1986) as a generalization of parametric regres-
sion and nonparametric regression. Later, this classical model has been extended
by many authors. For example, Baek et al. (2006) studied heteroscedastic semi-
parametric regression models with NA random errors, and established strong con-
sistency and asymptotic normality for least squares estimators and weighted least
squares estimators of β and g; Johnson et al. (2008) proposed a general strategy
for selection in semiparametric regression models by penalizing appropriate esti-
mating functions and gave some applications to semiparametric linear regression
with censored responses and missing predictors, respectively. Duran et al. (2012)
considered the difference between a ridge regression estimator and a Liu type es-
timator of the regression parameters in partial linear semiparametric regression
models, and extended the results to account for heteroscedasticity and autocovari-
ance in the error terms; Deng et al. (2019) established a general result on com-
plete convergence for weighted sums of linear processes and gave its application
to semiparametric regression models.

Hu (2006) gave the following specific form of the semiparametric regression
model:

y
(n)
i = x

(n)
i β + g(t

(n)
i ) + ε

(n)
i , i = 1, . . . , n, n ­ 1,

where g is an unknown function defined on a compact set A in Rp, and β is an
unknown parameter in R, x(n)i and t(n)i are known to be nonrandom, y(n)i represents
the ith response which is observable at x(n)i , and t(n)i , ε(n)i are random errors.

By the least squares and weight functions method, the following estimators of
β and g(t) were first introduced by Pan et al. (2003):

β̂n = S−2n

n∑
i=1

x̃
(n)
i ỹ

(n)
i , ĝn(t) =

n∑
i=1

Wni(t)(y
(n)
i − x

(n)
i β̂n),
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where Wni(t) =Wni(t; t
(n)
1 , . . . , t

(n)
n ) are measurable weight functions,

x̃
(n)
i = x

(n)
i −

n∑
k=1

Wnk(t
(n)
i )x

(n)
k , ỹ

(n)
i = y

(n)
i −

n∑
k=1

Wnk(t
(n)
i )y

(n)
k ,

S2
n =

n∑
i=1

(x̃
(n)
i )2.

Now we list some basic assumptions on the weight functions Wni(t):

(A1) g(·) satisfies the Lipschitz condition.

(A2) lim inf
n→∞

S2
n/n ­ D, where D is a positive constant.

(A3)
∣∣∣ n∑
k=1

Wnk(t)− 1
∣∣∣ = O(kn/n) for any t ∈ A.

(A4)
n∑

k=1

|Wnk(t)| = O(1) for any t ∈ A.

(A5) max
1¬k¬n

n∑
i=1

|Wnk(t
(n)
i )| = O(1).

(A6) There exist 1 ¬ kn ¬ n such that

lim
n→∞

kn =∞,
n∑

k=1

|Wnk(t)|I
(
∥t− t(n)k ∥ >

kn
n

)
= O

(
kn
n

)
for any t ∈ A.

(A7) There exist 1 ¬ kn ¬ n such that

(i) lim
n→∞

kn
n

= 0, max
1¬i¬n

|x(n)i | = O(n1−α), 1/2 < α ¬ 1;

(ii) lim
n→∞

kn

n(1+α)/2
= 0, max

1¬i¬n
|x(n)i | = O(n(1−α)/2), 1/2 < α ¬ 1.

(A8) max
1¬k¬n

|Wnk(t)| = O(n−α), 1/2 < α ¬ 1.

REMARK 3.1. Assumptions similar to (A1), (A2) and (A4)–(A6) for weight
functions can be found in Hu (2006), and in Section 3 there, it is shown that
the assumptions are satisfied for the nearest neighbour weights. This is the ba-
sis on which we will carry out numerical simulations later. Assumptions (A3),
(A7) and (A8) can also be easily satisfied, e.g. for the nearest neighbour weights
mentioned above.
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THEOREM 3.1. Let 1/2 < α ¬ 1, and {ε(n)i , 1 ¬ i ¬ n, n ­ 1} be an array
of zero mean random variables which is stochastically dominated by a random
variable X with E|X|2/α < ∞, and satisfies (1.1) for q > 2

2α−1 and constant
sequences {βn, n ­ 1} and {ξn, n ­ 1}. If conditions (A1)–(A6) and (A7)(i)
hold, then

(3.1) β̂n −−−→n→∞ β completely.

Proof. Without loss of generality, we can assume thatWni(t)­0 for 1¬ i¬n,
n ­ 1 and any t ∈ A. It is easily seen that

β̂n − β = S−2n

{ n∑
i=1

x̃
(n)
i g̃(t

(n)
i ) +

n∑
i=1

x̃
(n)
i ε

(n)
i −

n∑
i=1

x̃
(n)
i

n∑
k=1

Wnk(t
(n)
i )ε

(n)
k

}
.

In order to prove (3.1), we only need to show that

I1 = S−2n

n∑
i=1

x̃
(n)
i g̃(t

(n)
i ) −−−→

n→∞ 0,

I2 =
∞∑
n=1

P

(∣∣∣∣ 1n n∑
i=1

x̃
(n)
i ε

(n)
i

∣∣∣∣ > ε

)
<∞ for any ε > 0,

I3 =
∞∑
n=1

P

(∣∣∣∣ 1n n∑
i=1

x̃
(n)
i

n∑
k=1

Wnk(t
(n)
i )ε

(n)
k

∣∣∣∣ > ε

)
<∞ for any ε > 0,

by (A2). It is easily checked by (A1)–(A6) and (A7)(i) that

S−2n

∣∣∣ n∑
i=1

x̃
(n)
i g̃(t

(n)
i )

∣∣∣ ¬ (
max
1¬i¬n

|g̃(t(n)i )|
)(
S−2n

n∑
i=1

|x̃(n)i |
)
,

S−2n

n∑
i=1

|x̃(n)i | ¬ n
1/2S−2n

( n∑
i=1

(x̃
(n)
i )2

)1/2
=

(
n

S2
n

)1/2

¬ C

and

max
1¬i¬n

|g̃(t(n)i )| = max
1¬i¬n

∣∣∣g(t(n)i )−
n∑

j=1

Wnj(t
(n)
i )g(t

(n)
j )

∣∣∣
¬ max

1¬i¬n
|g(t(n)i )|

∣∣∣ n∑
j=1

Wnj(t
(n)
i )− 1

∣∣∣
+ max

1¬i¬n

n∑
j=1

|Wnj(t
(n)
i )| · |g(t(n)i )− g(t(n)j )|I(∥t(n)i − t

(n)
j ∥ > kn/n)

+ max
1¬i¬n

n∑
j=1

|Wnj(t
(n)
i )| · |g(t(n)i )− g(t(n)j )|I(∥t(n)i − t

(n)
j ∥ ¬ kn/n)

¬ Ckn
n
−−−→
n→∞ 0.
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Thus, I1 −−−→n→∞ 0. It is obvious by (A4) and (A7)(i) that

|x̃(n)i | ¬ |x
(n)
i |+ max

1¬k¬n
|x(n)k |

n∑
k=1

|Wnk(t
(n)
i )| ¬ Cn1−α for each 1 ¬ i ¬ n,

and thus

max
1¬i¬n

|x̃(n)i |
n1−α

= O(1).

Applying Corollary 2.2 with Xn,i = ε
(n)
i , cn,i = x̃

(n)
i /n1−α, p = 3

2α , s = 3
2α −

1
4 ,

and noting that p < 2
2α−1 , we get

I2 =
∞∑
n=1

P

(
n−α

∣∣∣∣ n∑
i=1

x̃
(n)
i

n1−α
ε
(n)
i

∣∣∣∣ > ε

)
<∞.

It follows from (A5) and (A7)(i) that∣∣∣ n∑
i=1

Wnk(t
(n)
i )x̃

(n)
i

∣∣∣ ¬ max
1¬i¬n

|x̃(n)i | · max
1¬k¬n

n∑
i=1

|Wnk(t
(n)
i )| ¬ Cn1−α,

which means

max
1¬k¬n

|
∑n

i=1Wnk(t
(n)
i )x̃

(n)
i |

n1−α
= O(1).

Therefore, I3 < ∞ follows from Corollary 2.2 in the same way. Thus the proof is
complete. ■

THEOREM 3.2. Let 1/2 < α ¬ 1, and {ε(n)i , 1 ¬ i ¬ n, n ­ 1} be an ar-
ray of zero mean random variables which is stochastically dominated by a random
variable X with E|X|2/α < ∞, and satisfies (1.1) for q > 2

2α−1 and constant se-
quences {βn, n ­ 1} and {ξn, n ­ 1}. If conditions (A1)–(A6), (A7)(ii) and (A8)
hold, then for any t ∈ A,

ĝn(t) −−−→n→∞ g(t) completely.

Proof. It is easy to see that condition (A7)(ii) implies (A7)(i). Hence we can
get β̂n → β completely by Theorem 3.1 immediately. Note that

ĝn(t)− g(t) =
n∑

k=1

Wnkε
(n)
k − (β̂n − β)

n∑
k=1

Wnk(t)x
(n)
k − g̃(t),

where g̃(t) = g(t)−
∑n

k=1Wnk(t)g(t
(n)
k ). For any t ∈ A and ε > 0, it is obvious
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that
∞∑
n=1

P (|ĝn(t)− g(t)| > ε) ¬
∞∑
n=1

P
(∣∣∣ n∑

k=1

Wnk(t)ε
(n)
k

∣∣∣ > ε/3
)

+
∞∑
n=1

P
(∣∣∣(β̂n − β) n∑

k=1

Wnk(t)x
(n)
k

∣∣∣ > ε/3
)

+
∞∑
n=1

P (|g̃(t)| > ε/3)

=: J1 + J2 + J3.

Obviously, J3 <∞ follows from (A2), (A3) and (A6). For J1, applying Corol-
lary 2.2 with Xn,k = ε

(n)
k , |cnk| = nα · |Wnk(t)|, p = 3

2α , s = 3
2α −

1
4 , we can

obtain J1 <∞ immediately by (A8).
For J2, by (A4) and (A7)(ii) we have

∞∑
n=1

P
(∣∣∣(β̂n − β) n∑

k=1

Wnk(t)x
(n)
k

∣∣∣ > ε/3
)

¬
∞∑
n=1

P
(
max
1¬k¬n

|x(n)k |
n∑

k=1

|Wnk(t)| · |β̂n − β| > ε/3
)

¬
∞∑
n=1

P (Cn(1−α)/2|β̂n − β| > ε/3).

Hence, to prove J2 <∞, we only need to show that

I4 = n(1−α)/2 · S−2n

n∑
i=1

x̃
(n)
i g̃(t

(n)
i ) −−−→

n→∞ 0,

I5 =
∞∑
n=1

P

(∣∣∣∣n(1−α)/2 · 1n n∑
i=1

x̃
(n)
i ε

(n)
i

∣∣∣∣ > ε

)
=
∞∑
n=1

P
(
n−α

∣∣∣ n∑
i=1

(n(α−1)/2x̃
(n)
i )ε

(n)
i

∣∣∣ > ε
)

<∞ for any ε > 0,

and

I6 =
∞∑
n=1

P

(∣∣∣∣n(1−α)/2 · 1n n∑
i=1

x̃
(n)
i

n∑
k=1

Wnk(t
(n)
i )ε

(n)
k

∣∣∣∣ > ε

)
=
∞∑
n=1

P
(
n−α

∣∣∣ n∑
k=1

[
n(α−1)/2

n∑
i=1

Wnk(t
(n)
i )x̃

(n)
i

]
ε
(n)
k

∣∣∣ > ε
)

<∞ for any ε > 0.

Similar to the proof of I1, by condition (A7)(ii) we again have

|I4| ¬ Cn(1−α)/2 ·
kn
n

= C
kn

n(α+1)/2
−−−→
n→∞ 0,
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which implies I4 −−−→n→∞ 0. It is easy to check by (A5) and (A7)(ii) that

max
1¬i¬n

|n(α−1)/2x̃(n)i | = n(α−1)/2 · max
1¬i¬n

|x̃(n)i | ¬ Cn
(α−1)/2 · n(1−α)/2 = O(1)

and

max
1¬k¬n

∣∣∣n(α−1)/2 n∑
i=1

Wnk(t
(n)
i )x̃

(n)
i

∣∣∣
¬ n(α−1)/2 · max

1¬i¬n
|x̃(n)i | · max

1¬k¬n

n∑
i=1

|Wnk(t
(n)
i )| = O(1).

So applying Corollary 2.2 with p = 3
2α and s = 3

2α −
1
4 again, we get I5 <∞ and

I6 <∞ immediately. Hence J2 <∞. This completes the proof of the theorem. ■

3.2. Application to simple linear errors-in-variables models. Consider the follow-
ing simple linear errors-in-variables (EV) model:

ηi = θ + βxi + εi, ξi = xi + δi, 1 ¬ i ¬ n,(3.2)

where θ and β are unknown parameters, x1, x2, . . . are unknown constants,
(ε1, δ1), (ε2, δ2), . . . are random vectors and ξi, ηi, i = 1, 2, . . . , are observable
variables. From (3.4) we have

ηi = θ + βξi + νi, νi = εi − βδi, 1 ¬ i ¬ n.(3.3)

Considering formula (3.3) as a usual regression model of ηi on ξi, we get the least
squares (LS) estimators of θ and β as follows:

β̂ =

∑n
i=1(ξ − ξn)(ηi − ηn)∑n

i=1(ξ − ξn)2
, θ̂ = ηn − β̂ξn,

where ξn = n−1
∑n

i=1 ξi. Other similar notations, such as ηn, δn and xn, are
defined in the same way. Denote Sn =

∑n
i=1(xi − xn)

2 for each n ­ 1. With the
notations above, we get

(3.4) β̂ − β

=

∑n
i=1(δi − δn)εi +

∑n
i=1(xi − xn)(εi − βδi)− β

∑n
i=1(δi − δn)

2∑n
i=1(ξi − ξn)2

and

θ̂ − θ = (β − β̂)xn + (β − β̂)δn + εn − βδn.(3.5)

The EV regression model was proposed by Deaton (1985) to model noisy obser-
vations and is more practical than the ordinary regression models. Due to its simple
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form and wide applicability, the EV model has attracted much attention. For more
details, we refer the readers to Liu and Chen (2005), Fan et al. (2010) and Miao
et al. (2011) among others for consistency and asymptotic normality of β̂ and θ̂.
In particular, Liu and Chen (2005) discussed necessary and sufficient conditions
for the strong consistency of β and the weak consistency of θ. Hu et al. (2017) ex-
tended the results of Liu and Chen (2015) to the case of ψ-mixing random variables
and further obtained necessary and sufficient conditions for the strong consistency
of β̂ and θ̂. Chen et al. (2020) obtained a necessary and sufficient condition for
the convergence rate in the strong consistency of the least squares estimators of β
and θ.

To present our results, the following assumption is indispensable:

(B1) {εi, i ­ 1} and {δi, i ­ 1} are sequences of zero mean random variables
satisfying (1.1) with q > 2 and stochastically dominated by ε and δ, respec-
tively, with 0 < Eε4 < ∞ and 0 < Eδ4 < ∞. In addition, {(εi)2+, i ­ 1},
{(εi)2−, i ­ 1}, {(δi)2+, i ­ 1} and {(δi)2−, i ­ 1} are sequences of random
variables satisfying (1.1) with q > 2.

We point out that condition (B1) is very general, because many dependent se-
quences possess this property, including END sequences, NOD sequences, WOD
sequences, NSD sequences, NA sequences, and mixing sequences.

Based on Corollaries 2.1 and 2.2, we obtain the strong consistency for the LS
estimators β̂ and θ̂:

THEOREM 3.3. Under the model (3.2), assume that condition (B1) holds. If

Sn
n
→∞, n

S
1/2
n

= O(1),

then

β̂
a.s.−−−→

n→∞ 0.(3.6)

Proof. According to (3.4), it suffices to prove

S−1n

n∑
i=1

(δi − δn)εi
a.s.−−−→

n→∞ 0,(3.7)

S−1n

n∑
i=1

(xi − xn)(εi − βδi)
a.s.−−−→

n→∞ 0,(3.8)

S−1n

n∑
i=1

(δi − δn)2
a.s.−−−→

n→∞ 0,(3.9)

S−1n

n∑
i=1

(ξi − ξn)2
a.s.−−−→

n→∞ 1.(3.10)
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From Lemma 1.1 and Sn/n→∞, we can derive

S−1n

∣∣∣ n∑
i=1

Eδiεi

∣∣∣ ¬ S−1n

n∑
i=1

E|δiεi| ¬ S−1n

n∑
i=1

(Eδ2i )
1/2(Eε2i )

1/2

¬ C n

Sn
(Eδ2)1/2(Eε2)1/2 −−−→

n→∞ 0.

Applying Corollary 2.1 with α = 1, p = 3/2 and s = 5/4, we obtain

S−1n

n∑
i=1

(δi − δn)2 ¬
n

Sn

∣∣∣∣ 1n n∑
i=1

(δ2i − Eδ2i )
∣∣∣∣+ n

Sn
δ
2
n + S−1n

n∑
i=1

Eδ2i
a.s.−−−→

n→∞ 0,

which implies (3.10). Similarly, we get S−1n

∑n
i=1(εi − εn)

2 −−−→
n→∞ 0. Hence, by

Hölder’s inequality,

S−1n

∣∣∣ n∑
i=1

(δi − δn)εi
∣∣∣ = S−1n

∣∣∣ n∑
i=1

(δi − δn)(εi − εn)
∣∣∣

¬
[
S−1n

n∑
i=1

(δi − δn)2 · S−1n

n∑
i=1

(εi − εn)2
]1/2 a.s.−−−→

n→∞ 0,

which yields (3.7). To prove (3.8), let cn,i = n(xi−xn)/Sn for 1 ¬ i ¬ n, n ­ 1.
Then

max
1¬i¬n

|cn,i| =
n

Sn
· max
1¬i¬n

|xi − xn| ¬
n

Sn
·
( n∑
i=1

(xi − xn)2
)1/2

=
n

S
1/2
n

= O(1).

So applying Corollary 2.2 with α = 1, p = 3
2 and s = 5

4 again, we obtain

S−1n

n∑
i=1

(xi − xn)εi = n−1
n∑

i=1

cniεi
a.s.−−−→

n→∞ 0,

S−1n

n∑
i=1

(xi − xn)δi = n−1
n∑

i=1

cniδi
a.s.−−−→

n→∞ 0,(3.11)

from which we can derive (3.8). For (3.10), noting that

S−1n

n∑
i=1

(ξi − ξn)2 = 1 + 2S−1n

n∑
i=1

(xi − xn)δi + S−1n

n∑
i=1

(δi − δn)2,

we obtain (3.10) immediately from (3.9) and (3.11). The proof is complete. ■

THEOREM 3.4. Suppose that the conditions of Theorem 3.3 are satisfied. If

n|xn|
Sn
→ 0, max

1¬i¬n

n|xn| |xi − xn|
Sn

= O(1),(3.12)

then

(3.13) θ̂
a.s.−−−→

n→∞ θ.
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Proof. According to (3.5), to prove (3.13), it suffices to show that

εn − βδn
a.s.−−−→

n→∞ 0,(3.14)

(β − β̂)xn
a.s.−−−→

n→∞ 0,(3.15)

(β − β̂)δn
a.s.−−−→

n→∞ 0.(3.16)

Applying Corollary 2.1 with α = 1, we have

εn =
1

n

n∑
i=1

εi
a.s.−−−→

n→∞ 0,

δn =
1

n

n∑
i=1

δi
a.s.−−−→

n→∞ 0,(3.17)

which yield (3.14).
By Theorem 3.3, we obtain β − β̂ a.s.−−−→

n→∞ 0, which combined with (3.17) yields
(3.16).

Finally, we will show (3.15). Combining (3.4) and (3.10), we need to get the
following result:

(3.18)
|xn|
Sn

( n∑
i=1

(δi − δn)εi +
n∑

i=1

(xi − xn)(εi − βδi)− β
n∑

i=1

(δi − δn)2
)
a.s.−−−→

n→∞ 0.

On the one hand, similar to the proofs of (3.7) and (3.9), by (3.12) we have

(3.19)
|xn|
Sn

n∑
i=1

(δi − δn)2

¬ n|xn|
Sn
·
∣∣∣∣ 1n n∑

i=1

(δ2i − Eδ2i )
∣∣∣∣+ n|xn|

Sn
δ
2
n +
|xn|
Sn

n∑
i=1

Eδ2i
a.s.−−−→

n→∞ 0,

and

|xn|
Sn

n∑
i=1

(δi − δn)εi
a.s.−−−→

n→∞ 0.(3.20)

On the other hand, let cn,i = n|xn|(xi − xn)/Sn for 1 ¬ i ¬ n, n ­ 1. By
(3.12),

max
1¬i¬n

|cn,i| =
n|xn|
Sn

max
1¬i¬n

|xi − xn| = O(1).
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Applying Corollary 2.2 with α = 1, we obtain

|xn|
Sn

n∑
i=1

(xi−xn)(εi−βδi) =
n|xn|
Sn

1

n

n∑
i=1

(xi−xn)εi−β
n|xn|
Sn

1

n

n∑
i=1

(xi−xn)δi

=
1

n

n∑
i=1

cn,iεi−β
1

n

n∑
i=1

cn,iδi
a.s.−−−→

n→∞ 0,

which, together with (3.19) and (3.20), yields (3.18), and thus (3.15) holds. The
proof is complete. ■

4. NUMERICAL SIMULATIONS

4.1. Semiparametric regression models. The observations are generated from the
following model:

y
(n)
i = 3x

(n)
i +

e(t
(n)
i ) cos t

(n)
i

300
+ ε

(n)
i , i = 1, . . . , n, n ­ 1,

where A = [0, 1], g(t) = (et cos t)/300, t(n)i = i/n, x(n)i = (−1)i · i/n,
i = 1, . . . , n, (ε

(n)
1 , . . . , ε

(n)
n ) has the same distribution as (ε1, . . . , εn), and

(ε1, . . . , εn)
T ∼ N(0,Σ), 0 is the zero column vector, and

Σ =



1
2+ρ

2 −ρ 0 · · · 0 0 0
−ρ 1

2+ρ
2 −ρ · · · 0 0 0

0 −ρ 1
2+ρ

2 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · 1

2+ρ
2 −ρ 0

0 0 0 · · · −ρ 1
2+ρ

2 −ρ
0 0 0 · · · 0 −ρ 1

2+ρ
2


n×n

, ρ = 0.25.

It is easily proved that {εi, i ­ 1} generated from the method above are NA by
Joag-Dev and Proschan (1983). Here, we take the nearest neighbour weights to be
the weight functions Wni(·). For any t ∈ A, we rewrite |t(n)1 − t|, , . . . , |t

(n)
n − t| as

|t(n)R1(t)
| ¬ · · · ¬ |t(n)Rn(t)

|;

if |t(n)i − t| = |t
(n)
j − t|, then |t(n)i − t| is moved before |t(n)j − t| when i < j.

Take kn = ⌊na/log n⌋, a = 63
64 , α = 1 and define the nearest neighbour weight

functions as follows:

Wni(t) =

{
1
kn

if |ti − t| ¬ |t(n)Rkn (x)
− t|,

0 otherwise.
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Based on Section 3 in Hu (2006), all the assumptions in Theorem 3.2 are satis-
fied. Next, by taking t = 0.2, 0.5, 0.8 and the sample sizes n = 100, 500, 1000,
respectively, we compute β̂n − β and ĝn(t)− g(t) for 1000 times and get the cor-
responding boxplots in Figures 1–3. The corresponding values of Mean Absolute
Error (MAE), Standard Deviation (SD) and Root Mean Squared Error (RMSE)
for β̂n and ĝn(t) are listed in Table 1.

Figures 1–3 show that β̂n−β and ĝn(t)−g(t), regardless of t = 0.2, 0.5 or 0.8,
fluctuate to zero and the variation ranges decrease substantially as the sample size
n increases. From Table 1, we can see that MAE, SD and RMSE of the estimators
of β and g(t) decrease as n increases. Hence, the numerical results here confirm
the consistency of β̂n and ĝn(t).

Figure 1. Boxplots of β̂n − β and ĝn(t)− g(t) with g(t) = (et cos t)/300 and t = 0.2
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Figure 2. Boxplots of β̂n − β and ĝn(t)− g(t) with g(t) = (et cos t)/300 and t = 0.5

4.2. EV regression models. In this subsection, we mainly evaluate the convergence
behaviour of (3.6) and (3.13) and verify the consistency of β̂ and θ̂. Firstly, we
generate the data. Let (ε1, . . . , εn)T ∼ N(0,Σ) and (δ1, . . . , δn)

T ∼ N(0,Σ),
where 0 represents the zero column vector and

Σ =



1 −ρ 0 · · · 0 0 0
−ρ 1 −ρ · · · 0 0 0
0 −ρ 1 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · 1 −ρ 0
0 0 0 · · · −ρ 1 −ρ
0 0 0 · · · 0 −ρ 1


n×n

, ρ = 0.1.
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Figure 3. Boxplots of β̂n − β and ĝn(t)− g(t) with g(t) = (et cos t)/300 and t = 0.8

It is obvious that {εi, i ­ 1} and {δi, i ­ 1} generated above are both NA
by Joag-Dev and Proschan (1983). Set xi = i/n0.2 for all 1 ¬ i ¬ n. It is easy
to verify that the conditions required in Theorems 3.3 and 3.4 are satisfied. For
different values of β and θ, we consider the following two cases.

CASE 1: θ = 3.5 and β = 0.5. By taking the sample sizes n = 100, 500, 1000
respectively, we compute the values of β̂− β and θ̂− θ for 1000 times and present
the plots in Figures 4 and 5, obtained by MATLAB software. Moreover, we record
the MAE and RMSE of β̂ and θ̂ respectively in Table 2.

CASE 2: θ = 1 and β = 2. We also compute the values of β̂ − β and θ̂ − θ for
1000 times under the sample sizes n = 100, 500, 1000 respectively and present
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Figure 4. β̂ − β with θ = 3.5 and β = 0.5
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Figure 5. θ̂ − θ with θ = 3.5 and β = 0.5
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Figure 6. β̂ − β with θ = 1 and β = 2
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Figure 7. θ̂ − θ with θ = 1 and β = 2
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Table 1. The MAE, SD and RMSE of β̂n and ĝn(t)

β̂n ĝn(t)

t n MAE SD RMSE MAE SD RMSE

0.2 100 0.1435 0.1774 0.1773 0.0615 0.0772 0.0770
500 0.0642 0.0805 0.0806 0.0321 0.0401 0.0404

1000 0.0438 0.0553 0.0553 0.0259 0.0324 0.0328
1500 0.0353 0.0436 0.0436 0.0233 0.0291 0.0294

0.5 100 0.1423 0.1751 0.1751 0.0675 0.0839 0.0839
500 0.0658 0.0830 0.0829 0.0405 0.0492 0.0506

1000 0.0443 0.0547 0.0547 0.0333 0.0397 0.0414
1500 0.0371 0.0460 0.0461 0.0315 0.0380 0.0396

0.8 100 0.1425 0.1795 0.1794 0.0980 0.1222 0.1236
500 0.0668 0.0827 0.0827 0.0557 0.0669 0.0700

1000 0.0452 0.0569 0.0568 0.0464 0.0523 0.0576
1500 0.0361 0.0455 0.0454 0.0451 0.0496 0.0565

Table 2. The MAE and RMSE of β̂ and θ̂ with θ = 3.5 and β = 0.5

n n = 100 n = 500 n = 1000

MAE: β̂ 0.0045 5.6073e-04 2.2697e-04
RMSE: β̂ 0.0056 7.0232e-04 2.8109e-04
MAE: θ̂ 0.1021 0.0465 0.0330
RMSE: θ̂ 0.1288 0.0578 0.0408

Table 3. The MAE and RMSE of β̂ and θ̂ with θ = 1 and β = 2

n n = 100 n = 500 n = 1000

MAE: β̂ 0.0105 0.0012 4.6698e-04
RMSE: β̂ 0.0130 0.0014 5.7516e-04
MAE: θ̂ 0.2298 0.0926 0.0670
RMSE: θ̂ 0.2861 0.1165 0.0829

the plots in Figures 6 and 7. Moreover, we record the MAE and RMSE of β̂ and θ̂
respectively in Table 3.

Figures 4–7 lead to the conclusion that the values of β̂ − β and θ̂ − θ fluctu-
ate around zero. From Tables 2 and 3, we can clearly find that MAE and RMSE
of β̂ and θ̂ fluctuate around zero and the fluctuation ranges decrease as n increases.
These conclusions agree with the theoretical results.
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