PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Charakterystyka metod zapobiegania powstawaniu bromianów(V) w wodzie przeznaczonej do spożycia

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Characteristics of bromate formation prevention methods in water intended for human consumption
Języki publikacji
PL
Abstrakty
PL
Zawartość bromianów(V) po procesie ozonowania wody zawierającej bromki może sięgać od 0,4 mgBrO3–/m3 do 60 mgBrO3–/m3. Na podstawie wyników badań toksykologicznych bromiany(V) zostały zakwalifikowane do grupy potencjalnych kancerogenów i są przedmiotem regulacji prawnych w wielu krajach. W Europie, od 25 grudnia 2008 r., ich maksymalna dopuszczalna zawartość w wodzie przeznaczonej do spożycia nie może przekraczać 10 mgBrO3–/m3. Ponieważ bromiany(V) są związkami trwałymi i trudno usuwalnymi za pomocą konwencjonalnych procesów oczyszczania wody, dlatego niezbędne jest opracowanie nowych technik kontroli ich powstawania w wodzie. Technologie przydatne do kontroli zawartości bromianów(V) w wodzie można podzielić na dwie grupy: (1) metody umożliwiające ograniczenie powstawania bromianów(V), (2) metody usuwania bromianów(V). W pracy omówiono metody, które mogą być wykorzystane do kontroli powstawania bromianów(V) w wodzie przeznaczonej do spożycia przez ludzi. Dokonano także oceny postępu w ich opracowaniu, jak również możliwości ich stosowania w systemach oczyszczania wody. W rozważaniach uwzględniono zarówno metody dobrze znane (np. obniżenie wartości pH wody, amonizacja wody, usuwanie bromków w konwencjonalnych procesach oczyszczania wody, optymalizacja parametrów procesowych, ozonowanie wieloetapowe, dawkowanie akceptorów rodników OH, dawkowanie nadtlenku wodoru), jak i nowsze (zastosowanie technik membranowych do usuwania bromków, ozononowanie katalityczne oraz dawkowanie silnych utleniaczy). Wybór właściwego rozwiązania problemu zwiększonej obecności bromianów(V) w wodzie, ze względu na złożony mechanizm ich tworzenia i jednoczesny wpływ wielu wskaźników jakości wody na skuteczność poszczególnych metod zapobiegania ich powstawaniu, powinien być zawsze poprzedzony badaniami pilotowymi.
EN
Bromate content following ozonation of bromide-containing water may range from 0.4 to 60 mgBrO3–/m3. Based on toxicological studies, bromates are classified as potential human carcinogens and are subject to legal regulations in many countries. In Europe, since the 25th of December 2008 their maximum permissible content in water intended for human consumption must not exceed 10 mgBrO3–/m3. As bromates are stable compounds, difficult to remove using conventional water treatment technologies, novel techniques to control their formation in water need to be developed. Technologies meant to control the bromate content in water can be divided into two groups: (1) methods allowing limitation of bromate formation and (2) methods for bromate removal. Methods that may be applied to control the bromate formation in water intended for human consumption are briefly reviewed herein. Evaluation of progress in their development was performed as well as feasibility of their application in water treatment systems was assessed. The review outlines both the well-known methods (e.g. lowering of pH, water ammonification, bromide removal in conventional water treatment processes, operational parameter optimization, multi-stage ozonation, addition of OH radical scavengers, hydrogen peroxide dosing) and the novel ones (e.g. membrane processes for bromide removal, catalytic ozonation, strong oxidant dosing). Selection of an appropriate solution to the problem of increased bromate presence in water should always be preceded by pilot studies. The main reasons include a complex mechanism of bromate formation and simultaneous effect of various water quality indicators on the effectiveness of different bromate formation prevention methods.
Czasopismo
Rocznik
Strony
17--26
Opis fizyczny
Bibliogr. 84 poz., rys., tab.
Twórcy
autor
  • Politechnika Śląska, Wydział Inżynierii Środowiska i Energetyki, Zakład Wodociągów i Kanalizacji, ul. S. Konarskiego 18, 44-100 Gliwice
Bibliografia
  • 1. C. von SONNTAG, U. von GUNTEN: Chemistry of Ozone in Water and Wastewater Treatment – from Basic Principles to Applications. IWA Publishing, London 2012.
  • 2. M. S. SIDDIQUI, G. L. AMY: Factors affecting DBP formation during ozone-bromide reactions. Journal of American Water Works Association 1993, Vol. 85, No. 1, pp. 63–72.
  • 3. U. von GUNTEN: Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Research 2003, Vol. 37, No. 7, pp. 1469–1487.
  • 4. U. OLSIŃSKA: Wpływ parametrów hydraulicznych komór kontaktowych na powstawanie bromianów i THM w wyniku ozonowania wód zawierających bromki. Projekt badawczy nr TO9C-106–14, Gliwice 2000.
  • 5. R. S. MAGAZINOVIC, B. C. NICHOLSON, D. E. MULCAHY, D. E. DAVEY: Bromide levels in natural waters: Its relationship to levels of both chloride and total dissolved solids and the implications for water treatment. Chemosphere 2004, Vol. 57, No. 4, pp. 329–335.
  • 6. U. LUNDSTROM, A. OLIN: Bromide concentration in Swedish precipitation, surface, and ground waters. Water Research 1986, Vol. 20, No. 6, pp. 751–756.
  • 7. M. REBHUN, J. MANKA, J. ZILBERMAN: Trihalomethane formation in high-bromide lake Galilee water. Journal of American Water Works Association 1988, Vol. 80, No. 6, pp. 84–89.
  • 8. G. CIVELEKOGLU, N. O. YIGIT, E. DIAMADOPOULOS, M. KITIS: Prediction of bromate formation using multilinear regression and artificial neural networks. Ozone: Science & Engineering 2007, Vol.29, No. 5, pp. 353–362.
  • 9. R. C. C. WEGMAN, P. HAMALKER, H. de HEER: Bromideion balance of a polder district with large-scale use of methyl bromide for soil fumigation. Food and Chemical Toxicology 1983, Vol. 21, p. 361–367.
  • 10. E. AGUS, N. VOUTCHKOV, D. L. SEDLAK: Disinfection by-products and their potential impact on the quality of water produced by desalination systems: A literature review. Desalination 2009, Vol. 237, No. 1–3, pp. 214–237.
  • 11. F. VALERO, R. ARBÓS: Desalination of brackish river water using electrodialysis reversal (ERD): Control of the THMs formation in the Barcelona (NE Spain) area. Desalination 2010, Vol. 253, No. 1–3, pp. 170–174.
  • 12. W. H. GLAZE, H. S. WEINBERG, J. E. CAVANAGH: Evaluating the formation of brominated DBP during ozonation. Journal of American Water Works Association 1993, Vol. 85, No. 1, pp. 96–103.
  • 13. S. W. KRASNER, J. GRAMITH, B. COFFEY, S. YATES: Impact of water quality and operational parameters on the formation and control of bromate during ozonation. Proc. of the International Workshop on Bromate and Water Treatment, IWSA, Paris 1993, pp. 157–168.
  • 14. M. SIDDIQUI, G. AMY, R. G. RICE: Bromate ion formation: A critical review. Journal of American Water Works Association 1995, Vol. 87, No. 10, pp. 58–70.
  • 15. B. LEGUBE, M. M. BOURBIGOT, A. DEGUIN, J. C. KRUITHOF, M. FIELDING, J. MALLEVIALLE, L. MATIA, A. MONTIEL, J. WILBOURNE: A survey of bromateion in European drinking water. Ozone Science & Engineering 1996, Vol. 18, No. 4, pp. 325–348.
  • 16. R. BUTLER, A. GODLEY, L. LYTTON, E. CARTMELL: Bromate environmental contamination: Review of impact and possible treatment. Critical Reviews in Environmental Science Technology 2005, Vol. 35, No. 3, pp. 193–217.
  • 17. U. OLSIŃSKA: Influence of contactor hydrodynamic behaviour on the efficiency of the ozonation process. Polish Journal of Chemical Engineering 2002, Vol. 4, No. 2, pp. 21–27.
  • 18. W. R. HAAG, J. HOIGNÉ: Ozonation of bromide-containing waters: Kinetics of formation of hypobromous acid and bromate. Environmental Science and Technology 1983, Vol.17, No. 5, pp. 261–267.
  • 19. A. FISBACHER, G. K. LÖPPENBER, G. C. von SONNTA, T. C. SCHMIDT: A new reactive pathway for bromite to bromate in the ozonation of bromide. Environmental Science & Technology 2015, Vol. 49, No. 19, pp. 11714–11720.
  • 20. IARC Monographs on the Evaluation of Carcinogenic Risk to Humans. WHO, Vol. 73, Lyon 1999.
  • 21. R. J BULL, J. A COTRUVO: Nongenotoxic mechanisms involved in bromate-induced cancer in rats. Ozone: Science & Engineering 2014, Vol. 36, No. 5, pp. 419–424.
  • 22. U.S. EPA: Toxicological Review of Bromate (CAS No. 15541-45-4): In Support of Summary Information on the Integrated Risk Information System (IRIS). EPA/635/R-01/002, Washington D.C. 2001.
  • 23. F. F. KAYA, M. TOPAKTAS: Genotoxic effects of potassium bromate on human peripheral lymphocytes in vitro. Mutation Research 2007, Vol. 626, No. 1–2, pp. 48–52.
  • 24. WHO Guidelines: Quality for Drinking Water, Vol. 1, Recommendations. WHO, 4th ed., Geneva 2011.
  • 25. U.S. EPA: 2012 Edition of the drinking water standards and health advisories. EPA/822-5-12-001, Office of Water, EPA, Washington D.C. 2012.
  • 26. Council Directive 98/83/EC of 3 November 1998 on Quality of Water Intended for Human Consumption. Official Journal of the European Communities, L330/32, 1998.
  • 27. Rozporządzenie Ministra Zdrowia z 13 listopada 2015 r. w sprawie jakości wody przeznaczonej do spożycia przez ludzi. Dziennik Ustaw RP 2015, poz. 1989.
  • 28. R. SONG, P. WESTERHOFF, P. MINEAR, G. AMY: Bromate minimization during ozonation. Journal of American Water Works Association 1997, Vol. 89, No. 6, pp. 69–78.
  • 29. S. BOULAND, J. P. DUGET, A. MONTIEL: Minimizing bromate concentration by controlling the ozone reaction time in a full-scale plant. Ozone: Science & Engineering 2004, Vol. 26, No. 4, pp. 381–388.
  • 30. F. J. BELTRÁN: Ozone Reaction Kinetics for Water and Wastewater Systems. Taylor & Francis e-Library, 2005.
  • 31. P. A. DANIEL, M. A. ZAFER, P. F. MEYERHOFER: Bromate control: Water quality, engineering and operational considerations. Proc. of the International Workshop on Bromate and Water Treatment, ISWA, Paris 1993, pp. 51–56.
  • 32. J. C. KRUITHOF, E. J. OBERWALD-MULLER, R. T. MEIJERS: Control strategies for the restriction of bromate formation. Proc. of the 12th Ozone World Congress, Lille 1995, Vol. 1, pp. 209–222.
  • 33. U. OLSIŃSKA, P. MARKOWICZ: Removal of adsorbable organic halides from water containing bromide ions by conventional and advanced oxidation. Ozone: Science & Engineering 2016, Vol. 38, No. 6, pp. 452–464.
  • 34. EPA Guidance Manual: Alternative Disinfectants and Oxidants. United States Environmental Protection Agency, Office of Water, 815-R-99-014, 1999.
  • 35. J. M. LAINÉ, J. G. IJACANGELO, E. W. CUMMINGS, K. E. CARNS, J. MALLEVIALLE: Influence of bromide on lowpressure membrane filtration for controlling DBPs in surface waters. Journal of American Water Works Association 1993, Vol. 85, No. 6, pp. 87–99.
  • 36. M. J. PRADOS-RAMIREZ, N. CIBA, M. M. BOURBIGOT: Available techniques for reducing bromate in drinking water. Water Supply 1995, Vol. 13, pp. 61–70.
  • 37. S. ŁAKOMSKA, J. WIŚNIEWSKI: Removal of bromide ions from aqueous solution by Donnan dialysis with anionexchange membranes. Desalination and Water Treatment 2013, Vol. 51, No. 7–9, pp. 1705–1711.
  • 38. M. BODZEK, K. KONIECZNY: Wykorzystanie procesów membranowych w uzdatnianiu wody. Oficyna Wydawnicza Projprzem-Eko, Bydgoszcz 2005.
  • 39. J. P. van der HOEK, J. A. M. H. HOFFMAN, P. A. C. BONNÉ, D. O. RIJNBENDE: The use of electrodialysis at Amsterdam Water Supply. In: Membrane Technology in Water and Wastewater Treatment. The Royal Society of Chemistry, Cambridge 2000.
  • 40. F. GE, H. SHU, Y. DAI: Removal of bromide by aluminum chloride coagulant in the presence of humic acid. Journal of Hazardous Materials 2007, Vol. 147, No. 1–2, pp. 457–462.
  • 41. F. GE, L. ZHU: Effects of coexisting anions on removal of bromide in drinking water by coagulation. Journal of Hazardous Materials 2008, Vol. 151, No. 2–3, pp. 676–681.
  • 42. L. KRISTANA, C. JOLL, A. HEITZ: Powdered activated carbon coupled with enhanced coagulation for natural organic matter removal and disinfection by-product control: Application in a Western Australian water treatment plant. Chemosphere 2011, Vol. 85, No. 5, pp. 661–667.
  • 43. M. S. SIDDIQUI, G. L. AMY, B. D. MURPHY: Ozone enhanced removal of natural organic matter from drinking water sources. Water Research 1997, Vol. 31, No. 12, pp. 3098–3106.
  • 44. E. C. WERT, J. C. EDWARDS-BRANDT, P. SINGER, G. C. BUDD: Evaluating magnetic ion exchange resin (MIEX®) pre-treatment to increase ozone disinfection and reduce bromate formation. Ozone: Science & Engineering 2005, Vol. 27, No. 5, pp. 371–379.
  • 45. C. J. JOHNSON, P. C. SINGER: Impact of a magnetic resin ion exchange on ozone demand and bromate formation during drinking water treatment. Water Research 2004, Vol. 38, No. 17, pp. 3738–3750.
  • 46. T. H. BOYER, P. C. SINGER: Bench scale testing of a magnetic ion exchange resin for removal of disinfection byproduct precursors. Water Research 2005, Vol. 39, No.7, pp. 1265–1276.
  • 47. P. C. SINGER, M. SCHNEIDER, J. EDWARDS-BRANDT, G. C. BUDD: MIEX for removal of DBP precursors: Pilotplant findings. Journal of American Water Works Association 2007, Vo. 99, No. 4, pp. 128–139.
  • 48. U. OLSIŃSKA: Modelling of bromate formation in relation to hydrodynamic characteristics of ozone contactors. Environmental Engineering Studies. Polish Research on the Way to the EU. Kluwer Academic, Plenum Publishers, New York 2003, pp. 109–119.
  • 49. B. LEGUBE, B. PARINET, K. GELINET, F. BERNE, J. P. CROUE: Modeling of bromate formation by ozonation of surface waters in drinking water treatment. Water Research 2004, Vol. 38, No. 8, pp. 2185–2195.
  • 50. M. SIDDIQUI, G. AMY, K. OZEKIN, W. ZHAI, P. WESTERHOFF: Alternative strategies for removing bromate. Journal of American Water Works Association 1994, Vol. 86, No. 10, pp. 81–96.
  • 51. M. S. ELOVITZ, U. von GUTEN: Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept. Ozone: Science & Engineering 1999, Vol. 21, No. 2, pp. 239–260.
  • 52. U. von GUNTEN, U. PINKERNELL: Ozonation of bromidecontaining drinking waters: A delicate balance between disinfection and bromate formation. Water Science and Technology 2000, Vol. 41, No. 7, pp. 53–59.
  • 53. U. PINKERNELL, U. von GUNTEN: Bromate minimization during ozonation: Mechanistic considerations. Environmental Science & Technology 2001, Vol. 35, No. 12, pp. 2525–2531
  • 54. J. E. WAJON, J. C. MORRIS: Rates of formation of N-bromo amines in aqueous solution. Inorganic Chemistry 1982, Vol. 21, No. 12, pp. 4258–4263.
  • 55. H. GALAL-GORCHEV, J. C. MORRIS: Formation and stability of bromamide, bromimide, and nitrogen tribromide in aqueous solution. Inorganic Chemistry 1965, Vol. 4, No. 6, pp. 899–905.
  • 56. D. J. JOHNSON, R. OVERBY: Bromine and bromamine disinfection chemistry. ASCE Journal of Sanitary Engineering Division 1971, Vol. 97, No. 5, pp. 617–628.
  • 57. G. W. INMAN, J. D. JOHNSON: Kinetics of monobromamine disproportionation – dibromamine formation in aqueous ammonia solutions. Environmental Science & Technology 1984, Vol. 18, No 4, pp. 219–224.
  • 58. H. LEI, B. J. MARIÑAS, R. A. MINEAR: Bromamine decomposition kinetics in aqueous solutions. Environmental Science and Technology 2004, Vol. 38, No. 7, pp. 2111–2119.
  • 59. W. R. HAAG, J. HOIGNÉ, H. BADER: Improved ammonia oxidation by ozone in the presence of bromide ion during water treatment. Water Research 1984, Vol. 18, No. 9, pp. 1125–1128.
  • 60. B. LANGLAIS, A. RECKHOW, D. R. BRINK: Fundamental Aspects. Ozone in Water Treatment: Application and Engineering. Lewis Publishers, Chelsea 1991.
  • 61. M. B. HEEB, J. CRIQUET, S. G. ZIMMERMANN-STEFFENS, U. von GUNTEN: Oxidative treatment of bromidecontaining waters: Formation of bromine and its reactions with inorganic and organic compounds – a critical review. Water Research 2014, Vol. 48, pp. 15–42.
  • 62. S. W. KRASNER, W. H. GLAZE, H. S. WEINBERG, P. A. DANIEL, I. N. NAJM: Formation and control of bromate during ozonation of waters containing bromide. Journal of American Water Works Association 1993, Vol. 85, No. 1, pp. 73–81.
  • 63. J. NEEMANN, R. HULSEY, D. REXING, E. WERT: Controlling bromate formation during ozonation with chlorine and ammonia. Journal of American Water Works Association 2004, Vol. 96, No. 2, pp. 26–29.
  • 64. M. O. BUFFLE, S. GALLI, U. von GUNTEN: Enhanced bromate control during ozonation: The chlorine-ammonia process. Environmental Science and Technology 2004, Vol. 38, No. 19, pp. 5187–5195.
  • 65. U. von GUNTEN, J. HOIGNE: Bromate formation during ozonation of bromide- containing waters: Interaction of ozone and hydroxyl radical reactions. Environmental Science and Technology 1994, Vol. 28, No. 7, pp. 1234–1242.
  • 66. U. von GUNTEN, Y. OLIVERAS: Kinetics of the reactions between hydrogen peroxide and hypobromous acid: Implication on water treatment and natural systems. Water Research 1997, Vol. 31, No. 4, pp. 900–906.
  • 67. H. CHRISTENSEN, K. SCHESTED, H. CORFITZEN: Reactions of radicals with hydrogen peroxide at ambient and elevated temperatures. Journal of Physical Chemistry 1982, Vol. 86, pp. 1588–1590.
  • 68. U.K. KLÄNING, T. WOLFF: Laser flash photolysis of HClO, ClO–, HBrO, and BrO– in aqueous solution. Reactions of Cl and Br atoms. Berichte der Bunsen-Gesellschaft für Physikalische Chemie 1985, Vol. 89, pp. 243–245.
  • 69. K. KOSAKA, H. YAMADA, K. SHISHIDA, S. ECHIGO, R. A. MINEAR, H. THSUNO, S. MATSUI: Evaluation of the treatment performance of a multistage ozone/hydrogen peroxide process by decomposition by-products. Water Research 2001, Vol. 35, pp. 3587–3594.
  • 70. M. S. ELOVITZ, U. von GUTEN, H. P. KAISER: Hydroxyl radical/ ozone ratios during ozonation processes. II. The effect of temperature, pH, alkalinity and DOM properties. Ozone: Science & Engineering 2000, Vol. 22, No. 2, pp. 123–150.
  • 71. J. C. KRUITHOF, P. C. KAMP, B. W. DUSSERT, S. R. CATER: Impact of the type of advanced oxidation (O3/H2O2, O3/UV and UV/ H2O2) on bromate formation. Proceedings of the regional conference Ozone Generation and Application to Water and Wastewater Treatment, Moscow 1998, pp. 405–420.
  • 72. U. von GUNTEN, Y. OLIVERAS: Advanced oxidation of bromide-containing waters: Bromate formation mechanisms. Environmental Science Technology 1998, Vol. 32, pp. 63–70.
  • 73. U. von GUNTEN, A. BRUCHET, E. COSTENTIN: Bromate formation in advanced oxidation processes. Journal of American Water Works Association 1996, Vol. 88, No. 6, pp. 53–65.
  • 74. J. L. ACERO, S.H. HADERLEIN, T.C. SCHMIDT, M.J.F. SUTER, U. von GUNTEN: MTBE oxidation by conventional ozonation and the combination ozone/hydrogen peroxide: Efficiency and bromate formation. Environmental Science and Technology 2001, Vol. 35, pp. 4252–4259.
  • 75. A. ARVAI, S. JASIM, N. BISWAS: Bromate formation in ozone advanced oxidation process. Ozone Science & Engineering 2012, Vol. 34, No. 5, pp. 325–333.
  • 76. T. MIZUNO, S. OHARA, F. NISHIMURA: O3/H2O2 process for both removal of odorous algal-derived compounds and of bromate ion formation. Ozone: Science and Engineering 2011, Vol. 33, No. 2, pp. 121–135.
  • 77. S. PHATTARAPATTAMAWONG, S. ECHIGO, S. ITOH: Simultaneous control of bromate ion and chlorinous odor in drinking water using an advanced oxidation process (O3/ H2O2). Ozone: Science and Engineering 2011, Vol. 33, No. 2, pp. 136–142.
  • 78. T. MYLLYKANGUS, T. NIESSIEN, T. VARTIANINEN: Bromate formation during ozonation of bromide containing waters – a pilot scale study. Ozone: Science & Engineering 2000, Vol. 22, No. 4, pp.487–499.
  • 79. J. L. ACERO, U. von GUNTEN: Influence of carbonate on the ozone/hydrogen peroxide based advanced oxidation process for drinking water treatment. Ozone: Science and Engineering 2000, Vol. 22, pp. 305–328.
  • 80. Q. HAN, H. J. WANG, W. Y. DONG, T. Z. LIU, Y. L. YIN: Suppression of bromate formation in ozonation process by using ferrate(VI): Batch study. Chemical Engineering Journal 2014, Vol. 236, pp. 110–120.
  • 81. Z. LIU, Y. CUI, J. CHEN, Z. YAN: The control of bromate formation in ozonation of bromide-containing water. Desalination and Water Treatment 2014, Vol. 52, No. 25–27, pp. 4942–4946.
  • 82. Q. WANG, Z. YANG, J. MA, J. WANG, L. WANG, M. GUO: Study on the mechanism of cerium oxid e catalytic ozonation for controlling the formation of bromate in drinking water. Desalination and Water Treatment 2016, Vol. 57, No. 33, pp. 15533–15546.
  • 83. T. ZHANG, W. CHEN, J. MA, Z. QIANG: Minimizing bromates formation with cerium dioxide during ozonation of bromide-containing water. Water Research 2008, Vol. 42, No. 14, pp. 3651–3658.
  • 84. Y. WU, C. WU, Y. WANG, C. HU: Inhibition of nanometal oxides on bromate formation during ozonation process. Ozone: Science & Engineering 2014, Vol. 36, No. 6, pp. 549–559.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bba7009e-ee61-4920-b17f-41cf22f8ed34
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.