Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Brain tumor segmentation and classification is the interesting area for differentiating the tumerous and the non-tumerous cells in the brain and to classify the tumerous cells for identifying its level. The conventional methods lack the automatic classification and they consumed huge time and are ineffective in decision-making. To overcome the challenges faced by the conventional methods, this paper proposes the automatic method of classification using the Harmony-Crow Search (HCS) Optimization algorithm to train the multi-SVNN classifier. The brain tumor segmentation is performed using the Bayesian fuzzy clustering approach, whereas the tumor classification is done using the proposed HCS Optimization algorithm-based multi-SVNN classifier. The proposed method of classification determines the level of the brain tumor using the features of the segments generated based on Bayesian fuzzy clustering. The robust features are obtained using the information theoretic measures, scattering transform, and wavelet transform. The experimentation performed using the BRATS database conveys proves the effectiveness of the proposed method and the proposed HCS-based tumor segmentation and classification achieves the classification accuracy of 0.93 and outperforms the existing segmentation methods.
Wydawca
Czasopismo
Rocznik
Tom
Strony
646--660
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
autor
- Mahatma Gandhi Institute of Technology, Hyderabad 500075, India
autor
- Chaitanya Bharathi Institute of Technology, Hyderabad, Telangana, India
autor
- JNTUK-UCEV, Andhra Pradesh, India
Bibliografia
- [1] Anitha V, Murugavalli S. Brain tumour classification using two-tier classifier with adaptive segmentation technique. IET Computer Vis 2016;10(1):9–17.
- [2] Havaei M, Larochelle H, Poulin P, Jodoin P-M. Within-brain classification for brain tumor segmentation. Int J Computer Assist Radiol Surg 2016;11(May (5)):777–88.
- [3] Jayachandran A, Kharmega Sundararaj G. Abnormality segmentation and classification of multi-class brain tumor in MR images using fuzzy logic-based hybrid kernel SVM. Int J Fuzzy Syst 2015;17(September (3)):434–43.
- [4] Tustison NJ, Shrinidhi KL, Wintermark M, Durst CR, Kandel BM, Gee JC, et al. Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Neuroinformatics 2015;13(April (2)):209–25.
- [5] Song Y, Ji Z, Sun Q, Zheng Y. A novel brain tumor segmentation from multi-modality MRI via a level-set-based model. J Sig Process Syst 2017;87(May (2)):249–57.
- [6] Usman K, Rajpoot K. Brain tumor classification from multimodality MRI using wavelets and machine learning. Pattern Anal Appl 2017;20(August (3)):871–81.
- [7] Dolz J, Laprie A, Ken S, Leroy H-A, Reyns N, Massoptier L, et al. Supervised machine learning-based classification scheme to segment the brainstem on MRI in multicenter brain tumor treatment context. Int J Comput Assist Radiol Surg 2016;11(January (1)):43–51.
- [8] Soltaninejad M, Yang G, Lambrou T, Allinson N, Jones TL, Thomas R, et al. Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI. Int J Comput Assist Radiol Surg 2017;12(February (2)):183–203.
- [9] Sauwen N, Acou M, Sima DM, Veraart J, Maes F, Himmelreich U, et al. Semi-automated brain tumor segmentation on multi-parametric MRI using regularized non-negative matrix factorization. BMC Med Imag )2017; (December).
- [10] Sachdeva J, Kumar V, Gupta I, Khandelwal N, Ahuja CK. A package – SFERCB – ‘‘segmentation, feature extraction, reduction and classification analysis by both SVM and ANN for brain tumors’’. Appl Soft Comput 2016;47(October): 151–67.
- [11] Qurat-Ul-Ain LG, Kazmi SB, Jaffar MA, Mirza AM. Classification and segmentation of brain tumor using texture analysis. Rec Adv Artif Intell Knowl Eng Data Bases 2010;147–55.
- [12] Aslam HA, Ramashri T, Ahsan MIA. A new approach to image segmentation for brain tumor detection using pillar K-means algorithm. Int J Adv Res Comput Commun Eng 2013;2(3).
- [13] Ricci PE, Dungan DH. Imaging of low and intermediate-grade gliomas. Semradonc 2001;11(2):103–12.
- [14] Rajini NH, Narmatha T, Bhavani R. Automatic classification of MR brain tumor images using decision tree. Special Issue of International Journal of Computer Applications on Int. Conf. on Electronics, Communication and Information Systems (ICECI 12). 2012. pp. 10–3.
- [15] Armstrong TS, Cohen MZ, Weinbrg J, Gilbert MR. Imaging techniques in neuro oncology. Semoncnur 2004;20 (4):231–9.
- [16] Dou WB, Ruan S, Chen YP, Bloyet D, Constans JM. A framework of fuzzy information fusion for the segmentation of brain tumor tissues on MR images. Image Vis Comput 2007;25(2):164–71.
- [17] Lin JS, Cheng KS, Mao CW. Segmentation of multispectral magnetic resonance image using penalized fuzzy competitive learning network. J Comput Biomed Res 1996;29(4):314–26.
- [18] Hamamci A, Kucuk N, Karaman K, Engin K, Unal G. Tumor-cut: segmentation of brain tumors on contrast enhanced MR images for radiosurgery applications. IEEE Trans Med Imag 2012;31(3):790–804.
- [19] Bauer S, Nolte LP, Reyes M. Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. Med Image Comput Comput Assist Interv 2011;14:354–61.
- [20] Kleihues P, Burger PC, Scheithaue BW. The new WHO classification of brain tumours. Brain Pathol 1993; (3):255–68.
- [21] Kazerooni AF, Mohseni M, Rezaei S, Bakhshandehpour G, Rad HS. Multi-parametric (ADC/PWI/T2-w) image fusion approach for accurate semi-automatic segmentation of tumorous regions in glioblastoma multiforme. Magn Reson Mater Phys Biol Med 2015;28(1):13–22.
- [22] Juan-Albarracín J, Fuster-Garcia E, Manjón JV, Robles M, Aparici F, Martí-Bonmatí L, et al. Automated glioblastoma segmentation based on a multiparametric structured unsupervised classification. PLoS One 2015;10(5).
- [23] Nie J, Xue Z, Liu T, Young GS, Setayesh K, Guo L, et al. Automated brain tumor segmentation using spatial accuracy-weighted hidden markov random field. Comput Med Imag Graph 2009;33(6):431–41.
- [24] Glenn TC, Zare A, Gader PD. Bayesian fuzzy clustering. IEEE Trans Fuzzy Syst 2015;23(October (5)):1545–61.
- [25] Mahdavi M, Fesanghary M, Damangir E. An improved harmony search algorithm for solving optimization problems. Appl Math Comput 2007;188:1567–79.
- [26] Askarzade Alireza. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Comput Struct 2016;169 (June):1–12.
- [27] Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imag 2014;PP(99):1.
- [28] Pandey P, Singh R, Vatsa M. Face recognition using scattering wavelet under illicit drug abuse variations. Proceedings of the International Conference on Biometrics (ICB); 2016. p. 1–6.
- [29] Ludwig O, Nunes U, Araujo R. Eigenvalue decay: a new method for neural network regularization. Neurocomputing 2014;124:33–42.
- [30] Meenakshi R, Anandhakumar P. A hybrid brain tumor classification and detection mechanism using KNN and HMM. Curr Med Imag Rev 2015;11(2):70–6.
- [31] Kharat KD, Kulkarni PP, Nagori MB. Brain tumor classification using neural network based methods. Int J Comput Sci Inform 2012;1(4):2231–5292.
- [32] Suhag S, Saini LM. Automatic brain tumor detection and classification using SVM classifier. Int J Adv Sci Eng Technol 2015;(October (4)).
- [33] Bauer S, Fejes T, Slotboom J, Wiest R, Nolte L-P, Reyes M. Segmentation of brain tumor images based on integrated hierarchical classification and regularization. MICCAI BraTS Workshop. Nice: Miccai Society; 2012.
- [34] Li Y, Dou Q, Yu J, Jia F, Qin J, Heng P-A. Automatic brain tumor segmentation from mr images via a multimodal sparse coding based probabilistic model. Proceedings of the IEEE International Workshop on Pattern Recognition in Neuroimaging (PRNI); 2015. p. 41–4.
- [35] Subbanna N, Arbel T. Probabilistic gabor and markov random fields segmentation of brain tumours in MRI volumes. Proceedings of MICCAI Brain Tumor Segmentation Challenge (BRATS); 2012. p. 28–31.
- [36] Xiao Y, Hu J. Hierarchical random walker for multimodal brain tumor segmentation. Proceedings of MICCAIBRATS; 2012. p. 36–40.
- [37] Zhao L, Wu W, Corso JJ. Semi-automatic brain tumor segmentation by constrained mrfs using structural trajectories. Medical Image Computing and Computer-assisted Intervention – MICCAI. 2013. pp. 567–75.
- [38] Zikic D, Glocker B, Konukoglu E, Shotton J, Criminisi A, Ye DH, et al. Context-sensitive classification forests for segmentation of brain tumor tissues. Proceedings of MICCAI-BRATS; 2012.
- [39] Santosh T, Bhopale D, Kumar S, Jayadevappa D. Implementation of image segmentation using FPGA. Int J Adv Res Technol 2014;3(4):2700–2.
- [40] Ratre A, Pankajakshan V. Tucker visual search-based hybrid tracking model and Fractional Kohonen Self-Organizing Map for anomaly localization and detection in surveillance videos. Imag Sci J 2017;1–16.
- [41] Nipanikar SI, HimaDeepthi V, Kulkarni N. A sparse representation based image steganography using particle swarm optimization and wavelet transform.Alexand Eng J 2017.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bba6a629-e919-423b-b40d-2aa321c95821