Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In a nonparametric regression model with random design, where the regression function m is given by m (x) = E(Y |X = x), estimation of the location θ (mode) and size m (θ) of a unique maximum of m is considered. As estimators, location θ and size m (θ) of a maximum of the Nadaraya-Watson kernel estimator m for the curve m are chosen. Within this setting, we establish joint asymptotic normality and asymptotic independence for θ and m (θ) (which can be exploited for constructing simultaneous confidence intervals for θ and m (θ)) under mild local smoothness assumptions on m and the design density g (imposed in a neighborhood of θ). The bandwidths employed for m are data-dependent and of plug-in type. This is handled by viewing the estimators as stochastic processes indexed by a so-called scaling parameter and proving functional central limit theorems for those processes. In the same way, we obtain, as a by-product, an asymptotic normality result for the Nadaraya-Watson estymator itself at a finite number of distinct points, which improves on previous results.
Czasopismo
Rocznik
Tom
Strony
213--235
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
- Technical University of Ilmenau, Institute for Mathematics, Postfach 100565, D-98984 Ilmenau, Germany
Bibliografia
- [1] P. Billingsley, Convergence of Probability Measures, Wiley, New York 1968.
- [2] J. Boularan, L. Ferré and P. Vieu, Location of particular points in non-parametric regression analysis, Austral. J. Statist. 37 (1995), pp. 161-168.
- [3] W. Eddy, Optimal kernel estimators of the mode, Ann. Statist. 8 (1980), pp. 870-882.
- [4] W. Eddy, The asymptotic distributions of kernel estimators of the mode, Z. Wahrsch. Verw. Gebiete 59 (1982), pp. 279-290.
- [5] W. Ehm, Adaptive kernel estimation of a cusp-shaped mode, in: Applied Mathematics and Parallel Computing. Festschrift for Klaus Ritter, H. Fischer et al. (Eds.), Physica-Verlag, Heidelberg 1996, pp. 109-120.
- [6] P. Gaenssler and D. Rost, Empirical and Partial-sum Processes Revisited as Random Measure Processes, MaPhySto Lecture Notes No. 5, Department of Mathematical Sciences, University of Aarhus, Aarhus, Denmark, 1999.
- [7] Th. Gasser, P. Hall and B. Presnell, Nonparametric estimation of the mode of a distribution of random curves, J. Roy. Statist. Soc. Ser. B 60 (1998), pp. 681-691.
- [8] Th. Gasser and H.-G. Müller, Kernel estimation of regression functions, Lecture Notes in Math. 757, Springer, Berlin-New York 1979, pp. 23-68.
- [9] B. Grund and P. Hall, On the minimisation of Lp error in mode estimation, Ann. Statist. 23 (1995), pp. 2264-2284.
- [10] W. Härdle, Applied Nonparametric Regression, Cambridge University Press, Cambridge 1990.
- [11] J. Harezlak and N. Heckman, CriSP: A tool in bump hunting, J. Computational and Graphical Statist. 10 (2001), pp. 713-729.
- [12] N. Heckman, Bump hunting in regression analysis, Statist Probab. Lett 14 (1992), pp. 141-152.
- [13] J. Hoffmann-Jørgensen, Stochastic Processes on Polish Spaces, 1984, unpublished.
- [14] E. Mammen, J. S. Marron and N. I. Fisher, Some asymptotics for multimodality tests based on kernel estimates, Probab. Theory Related Fields 91 (1992), pp. 115-132.
- [15] H.-G. Müller, Kernel estimators of zeros and of location and size of extrema of regression functions, Scand. J. Statist. 12 (1985), pp. 221-232.
- [16] H.-G. Müller, Nonparametric Regression Analysis of Longitudinal Data, Lecture Notes in Statist. 46, Springer, 1988.
- [17] H.-G. Müller, Adaptive nonparametric peak estimation, Ann. Statist. 17 (1989), pp. 1053-1069.
- [18] H.-G. Müller and U. Stadtmüller, Variable bandwidth kernel estimators of regression functions, Ann. Statist. 15 (1987), pp. 182-201.
- [19] E. A. Nadaraya, On estimating regression, Theory Probab. Appl. 10 (1964), pp. 186-190.
- [20] E. A. Nadaraya, Nonparametric Estimation of Probability Densities and Regression Curves, Kluwer Academic Publishers, Dordrecht 1989.
- [21] E. Parzen, On estimation of a probability density function and mode, Ann. Math. Statist. 33 (1962), pp. 1065-1076.
- [22] J. P. Romano, On weak convergence and optimality of kernel density estimates of the mode, Ann. Statist. 16 (1988a), pp. 629-647.
- [23] J. P. Romano, Bootstrapping the mode, Ann. Inst. Statist. Math. 40 (1988b), pp. 565-586.
- [24] J. Shao and D. Tu, The Jackknife and Bootstrap, Springer, New York 1995.
- [25] B. W. Silverman, Using kernel density estimates to investigate multimodality, J. Roy. Statist. Soc. Ser. B 43 (1981), pp. 97-99.
- [26] A. W. van der Vaart and J. A. Wellner, Weak Convergence and Empirical Processes with Applications to Statistics, Springer, New York 1996.
- [27] G. S. Watson, Smooth regression analysis, Sankhyā Ser. A 26 (1964), pp. 359-372.
- [28] K. Ziegler, Nonparametric estimation of location and size of maxima of regression functions in the random design case based on the Nadaraya-Watson estimator with data-dependent bandwidths, Habilitationsschrift, Univ. of Munich, 2000.
- [29] K. Ziegler, On bootstrapping the mode in the nonparametric regression model with random design, Metrika 53 (2001a), pp. 151-170.
- [30] K. Ziegler, On local bootstrap bandwidth choice in kernel density estimation, submitted for publication (2001b); available under http://www.mathematik.tu-ilmenau.de/~ziegler/papers.html.
- [31] K. Ziegler, On nonparametric kernel estimation of the mode of the regression function in the random design model, J. Nonparametr. Statist. 14 (2002), pp. 749-774.
- [32] K. Ziegler, On the asymptotic normality of kernel regression estimators of the mode in the nonparametric random design model, J. Statist. Plann. Inference 115 (2003), pp. 123-144.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bba4b1ab-4f6d-4e16-bc8d-66e7ef32a57f