PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Lambda-Cyhalothrin - An Insecticide from the Group of Synthetic Pyrethroids - on the Concentrations of NF-ĸB and VEGFR2 in the Liver of Albino Swiss Mice as Markers of its Damage

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ lambda-cyhalothrin - insektycydu z grupy syntetycznych pyretroidów - na stężenia NF-ĸB i VEGFR2 w wątrobie myszy Albino Swiss jako markerów jego uszkodzenia
Języki publikacji
EN PL
Abstrakty
EN
Background: Lambda-cyhalothrin (LCH) is a one of the type II synthetic pyrethroids which is widely used in veterinary medicine and in agriculture to protect crops from pest insects. In previous studies, there are few reports about the influence of pyrethroids on the liver and its damage. Analyzing numerous publications, nuclear factor-ĸB (NF-ĸB) and vascular endothelial growth factor 2 (VEGFR2) seem to be sensitive indicators of microdamages occurring at the cellular level in the liver. The aim of the study was to investigate the effect of subacute poisoning with LCH on the concentration of NFĸB and VEGFR2 in the livers. Methods: The experiment was carried on 32 Albino Swiss mice (16 females and 16 males). The animals were divided into 4 groups. Controls received canola oil, the rest received LCH orally in oil at a dose of 2 mg/kg bw for 7 days. The NF-ĸB and VEGFR2 were mesuredin mice livers with ELISA kits. Results: The mean NF-ĸB concektration in control femals’ livers was 3.27ng/mL and after LCH it was 6.12ng/mL (p<0.05). In control males it was 5.49ng/mL and it did not significantly differ after LCH when it was 5.27ng/mL. The mean VEGFR2 in control females was 84.28ng/mL and after LCH it was 173.81ng/mL (p<0.05). In control males it was 170.61ng/mL and after LCH 170.06ng/mL. Conclusion:The NF-ĸB and VEGFR2 can be used as markers of liver damage after subacute poisoning with LCH on female mice. Females are more sensitive to LCH than males.
PL
Wstęp: Lambda-cyhalotryna (LCH) jest jednym z syntetycznych pyretroidów typu II, szeroko stosowanym w weterynarii i rolnictwie do ochrony upraw przed owadami. We wcześniejszych badaniach niewiele jest doniesień o wpływie pyretroidów na wątrobę i jej uszkodzenia. Analizując liczne publikacje, czynnik jądrowy-ĸB (NF-ĸB) i czynnik wzrostu śródbłonka naczyniowego 2 (VEGFR2) wydają się być czułymi wskaźnikami mikrouszkodzeń występujących na poziomie komórkowym w wątrobie. Celem pracy było zbadanie wpływu podostrego zatrucia LCH na stężenie NFĸB i VEGFR2 w wątrobie. Metody: Doświadczenie przeprowadzono na 32 myszach Albino Swiss (16 samic i 16 samców). Zwierzęta podzielono na 4 grupy. Kontrolne grupy samic i samców otrzymywały olej rzepakowy, pozostałe otrzymywały LCH doustnie w oleju w dawce 2 mg/kg mc przez 7 dni. NF-ĸB i VEGFR2 były w wątrobach myszy były mierzone z użyciem zestawów ELISA. Wyniki: Średnie stężenie NF-ĸB w wątrobach kontrolnych samic wynosiło 3,27 ng/ml, a po LCH 6,12 ng/ml (p<0,05). U samców kontrolnych wynosił on 5,49 ng/ml i nie różnił się istotnie po LCH, gdzie wynosił 5,27 ng/ml. Średnie stężenie VEGFR2 u samic z grupy kontrolnej wynosił 84,28 ng/ml, a narażonych na LCH 173,81 ng/ml (p<0,05). U samców z grupy kontrolnej wynosiło 170,61 ng/ml, a narażonych na LCH 170,06 ng/ml. Wniosek: NF-ĸB i VEGFR2 można stosować jako markery uszkodzenia wątroby po podostrym zatruciu LCH u samic myszy. Samice są bardziej wrażliwe na LCH niż samce.
Rocznik
Tom
Strony
57--68
Opis fizyczny
Bibliogr. 77 poz., tab.
Twórcy
  • Department of Obstetrics and Perinatology in Lublin, Poland
  • 3rd Chair and Department of Gynecology in Lublin, Poland
autor
  • Students’ Scientific Association at The Chair and Department of Hygiene, Medical University in Lublin, Poland
  • Team of Ophthalmology Departments, Mazowiecki Szpital Bródnowski in Warsaw, Poland
  • Chair and Department of Hygiene and Epidemiology, Medical University in Lublin, Poland
  • Chair and Department of Hygiene and Epidemiology, Medical University in Lublin, Poland
  • Department of Underwater Works Technology, Naval Academy in Gdynia, Poland
Bibliografia
  • 1. Glynne-Jones, A. Pyrethrum. Pest Outlook,12(5),195–8.2001;
  • 2. Prakash, A.; Rao, J. Botanical Pesticides in Agriculture. Boca Raton, FL, USA: CRC Press Inc; pp.480. 1997;
  • 3. Bhat, B.K.; Pyrethrum flowers: production, chemistry, toxicology, and uses. New York: Oxford University Press; 1995;
  • 4. Staudinger, H.; Ruzicka, L. Insektentötende Stoffe III. Konstitution des Pyrethrolons. Helvetica Chimica Acta,7(1),212–35. 1924;
  • 5. Farnham, A.W. Genetics of resistance of pyrethroid-selected houseflies, Musca domestica L. Pesticide Science;4(4),513–20. 1973;
  • 6. Lopez, O.; Fernandez-Bolanos, J. Green Trends in Insect Control. Cambridge, UK: Royal Society of Chemistry; 2011;
  • 7. Bradberry, S.; Cage S.A.; Proudfoot, A.T; Vale, J.A. Poisoning due to pyrethroids. Toxicological Reviews,24. 93–106. 2005;
  • 8. Selim, S.; Preiss, F.J.; Gabriel, K.L.; Jonkman, J,H.; Osimitz, T,G. Absorption and mass balance of piperonyl butoxide following an 8-h dermal exposure in human volunteers. Toxicol. Lett,107(1–3),207–217.1999;
  • 9. Casida, J.E.; Quistad, G.B. Golden age of insecticide research: past, present, or future? Annu Rev Entomol,,3:1–16.1998;
  • 10. Naumann, K. Synthetic Pyrethroid Insecticides: Structures and Properties. Berlin Heidelberg: Springer-Verlag; 1990;
  • 11. Soderlund, D.M.; Bloomquist, J.R. Neurotoxic actions of pyrethroid insecticides. Annu Rev Entomol,34,77–96.1989;
  • 12. Laskowski, D.A. Physical and chemical properties of pyrethroids. Rev Environ Contam Toxicol,174,49–170.2002;
  • 13. Vasquez, M.E.; Gunasekara A.S; Cahill, T.M; Tjeerdema, R.S. Partitioning of etofenprox under simulated California rice-growing conditions. Pest Management Science,66(1),28–34.2010;
  • 14. Wielgomas, B.; Piskunowicz, M. Biomonitoring of pyrethroid exposure among rural and urban populations in northern Poland. Chemosphere. ,93(10):2547-53.2013;
  • 15. Verschoyle, R.D.; Aldridge, W.N. Structure-activity relationships of some pyrethroids in rats. Arch. Toxicol,45(4),325–329.1980;
  • 16. Lawrence, L.J.; Casida, J,E. Pyrethroid toxicology: Mouse intracerebral structure-toxicity relationships. Pestic. Biochem. Physiol,18(1),9–14.1982;
  • 17. Gray, A,J. Pyrethroid structure-toxicity relationships in mammals. Neurotoxicology.6(2),127–37.1985;
  • 18. Vijverberg, H,P.;, van den Bercken, J. Neurotoxicological effects and the mode of action of pyrethroid insecticides. Crit Rev Toxicol,21(2),105–26.1990;
  • 19. Chinn. K.; Narahashi, T. Stabilization of sodium channel states by deltamethrin in mouse neuroblastoma cells. J. Physiol,380,191–207.1986;
  • 20. Davies, T.G.E.; Field, L.M.; Usherwood, P.N.R.; Williamson, M.S.DDT, pyrethrins, pyrethroids and insect sodium channels. IUBMB Life, 9 (3), 151–62. 2007;
  • 21. Soderlund, D.M. Molecular mechanisms of pyrethroid insecticide neurotoxicity: recent advances. Arch Toxicol , 86(2),165-81.2012;
  • 22. Morgan, M.K. Children's exposures to pyrethroid insecticides at home: a review of data collected in published exposure measurement studiem conducted in the United States. Int J Environ Res Public Health , 9(8):2964-85.2012;
  • 23. Saillenfait, A.M.; Ndiaye, D.; Sabate, J.P. Pyrethroids: exposure and health effects--an update. Int J Hyg Environ Heallth , 218(3):281-92.2015;
  • 24. Al-Omar, M.; Naz, M.; Mohammed, S.A.A.; Mansha, M.; Ansari, M.N.; Rehman, N.U.; Kamal. M.; Mohammed, H.A.; Yusuf, M.; Hamad, A.M.; Akhtar, N.; Khan, R,A. Pyrethroid-Induced Organ Toxicity and Anti-Oxidant-Supplemented Amelioration of Toxicity and Organ Damage: The Protective Roles of Ascorbic Acid and α-Tocopherol. Int J Environ Res Public Health ,17(17):6177.2020;
  • 25. Nieradko-Iwanicka, B.; Borzęcki, A. Subacute poisoning of mice with deltamethrin produces memory impairment, reduced locomotor activity, liver damage and changes in blood morphology in the mechanism of oxidative stress. Pharmacol Rep , 67 (3): 535-541.2015;
  • 26. Han. B.; Lv, Z.; Zhang, X.; Lv, Y.; Li, S.; Wu, P.; Yang, Q.; Li, J.; Qu, B, Zhang Z. Deltamethrin induces liver fibrosis in quails via activation of the TGF-β1/Smad signaling pathway. Environ Pollut , 259:113870. 2020;
  • 27. Aouey, B.; Derbali, M.; Chtourou, Y.; Bouchard, M.; Khabir, A.; Fetoui, H. Pyrethroid insecticide lambda-cyhalothrin and its metabolites indu ce liver injury through the activation of oxidative stress and proinflammatory gene expression in rats following acute and subchronic exposure. Environ Sci Pollut Res Int , 24(6):5841-5856. 2017;
  • 28. Li, Q.; Verma, I.M. NF-kappaB regulation in the immune system. Nat Rev Immunol,;2(10,:725–34.2002;
  • 29. Hayden, M.S.; Ghosh, S. Signaling to NF-kappaB. Genes Dev,18(18),2195–224.2004;
  • 30. Perkins, N,D. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol.,;8(1),49–62.2007;
  • 31. Kumar, A.; Takada, Y.; Boriek, A.M; Aggarwal, B.B. Nuclear factor-kappaB: its role in health and disease. J Mol Med (Berl),82(7),434–48.2004;
  • 32. Liu, T.; Zhang, L.; Joo, D.; Sun, S-C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther,2,17023.2017;
  • 33. Wang, N.; Liang, H.; Zen, K. Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front Immunol,5,614.2004;
  • 34. Lawrence, T. The Nuclear Factor NF-κB Pathway in Inflammation. Cold Spring Harb. Perspect. Biol,;1(6). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882124/.(cited on April1,2021). 2009;
  • 35. Pahl, H.L. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogen,,18(49),6853–66.1999;
  • 36. Bharti, A.C.; Aggarwal, B,B. Nuclear factor-kappa B and cancer: its role in prevention and therapy. Biochem Pharmacol,64(5–6),883–8.2002;
  • 37. Schwabe, R.F.; Seki, E.; Brenner, D,A. Toll-like receptor signaling in the liver. Gastroenterology,130(6),1886–900.2006;
  • 38. Olsson, A-K.; Dimberg, A.; Kreuger, J.; Claesson-Welsh, L. VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol,7(5),359–71.2006;
  • 39. Semenza, G.L. Vasculogenesis, angiogenesis, and arteriogenesis: mechanisms of blood vessel formation and remodeling. J Cell Biochem,102(4),840–7.2007;
  • 40. Moreira, I.S.; Fernandes, P.A.; Ramos, M.J. Vascular endothelial growth factor (VEGF) inhibition--a critical review. Anticancer Agents Med. Chem,7(2),223–245.2007;
  • 41. Duffy, A.M.; Bouchier-Hayes, D.J.; Harmey, J.H. Vascular Endothelial Growth Factor (VEGF) and Its Role in Non-Endothelial Cells: Autocrine Signalling by VEGF [Internet]. Landes Bioscience; [cited on 13 Feb 2021]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK6482/2013;
  • 42. Tjwa, M.; Luttun, A.; Autiero, M.; Carmeliet, P. VEGF and PlGF: two pleiotropic growth factors with distinct roles in development and homeostasis. Cell Tissue Res,314(1),5–14.2003;
  • 43. Yamazaki, Y.; Morita, T. Molecular and functional diversity of vascular endothelial growth factors. Mol Divers,10(4),515–27.2006;
  • 44. Melincovici, C.S.; Boşca, A.B.; Şuşman, S.; Mărginean, M.; Mihu, C.; Istrate, M. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Rom J Morphol Embryol,59(2),455–67.2018;
  • 45. Elhalwagy, M.E.; Abd-Alrahman, S.H.; Nahas, A.A.; Ziada, R.M.; Mohamady, A.H. Hepatopancreatic intoxication of lambda cyhalothrin insecticide on albino rats. Int J Clin Exp Med, 8(5),7297-305. 2015;
  • 46. Kroeger, A.; Villegas, E.; Ordoñez-González, J.; Pabon, E.; Scorza, J.V. Prevention of the transmission of Chagas’ disease with pyrethroid-impregnated materials. Am J Trop Med Hyg,68(3),307–11.2003;
  • 47. Anadón, A.; Martínez, M.A; Martínez, M.; Castellano, V.; Ares, I.; Romero, A. Differential induction of cytochrome P450 isoforms and peroxisomal proliferation by cyfluthrin in male Wistar rats. Toxicol Lett,;220(2),135–42.2013;
  • 48. Hedges, L.; Brown, S.; MacLeod, A.K.;, Moreau, M.;, Yoon, M.; Creek, M.R.; Osimitz, T.G.; Lake, B.G. Metabolism of bifenthrin, β-cyfluthrin, λ-cyhalothrin, cyphenothrin and esfenvalerate by rat and human cytochrome P450 and carboxylesterase enzymes. Xenobiotica,50(12),1434-1442.2020;
  • 49. Fetoui, H.; Garoui, E.M,; Zeghal, N. Lambda-cyhalothrin-induced biochemical and histopathological changes in the liver of rats: ameliorative effect of ascorbic acid. Exp Toxicol Pathol,61(3),189–96.2009.;
  • 50. Fetoui, H.; Makni, M.; Garoui , E.M; Zeghal, N. Toxic effects of lambda-cyhalothrin, a synthetic pyrethroid pesticide, on the rat kidney: Involvement of oxidative stress and protective role of ascorbic acid. Exp Toxicol Pathol,62(6),593–9.2010;
  • 51. Fetoui. H.; Garoui, E.M.; Makni-Ayadi, F.; Zeghal , N. Oxidative stress induced by lambda-cyhalothrin (LTC) in rat erythrocytes and brain: Attenuation by vitamin C. Environ Toxicol Pharmacol, 26(2),225–31.2008;
  • 52. Abdallah, F.B.; Fetoui, H.; Fakhfakh, F.; Keskes, L. Caffeic acid and quercetin protect erythrocytes against the oxidative stress and the genotoxic effects of lambda-cyhalothrin in vitro. Hum Exp Toxicol.,31(1),92–100.2012;
  • 53. Aouey. B.; Derbali, M.; Chtourou, Y.; Bouchard, M.; Khabir, A.; Fetoui, H. Pyrethroid insecticide lambda-cyhalothrin and its metabolites indu ce liver injury through the activation of oxidative stress and proinflammatory gene expression in rats following acute and subchronic exposure. Environ Sci Pollut Res Int, 24(6),5841–56.2017;
  • 54. Martínez, M.A.; Ares, I.; Rodríguez, J.L.; Martínez,M.; Roura-Martínez, D.; Castellano, V.; Lopez-Torres, B.; Martínez-Larrañaga, M.R.; Anadón, A. Pyrethroid insecticide lambda-cyhalothrin induces hepatic cytochrome P450 enzymes, oxidative stress and apoptosis in rats. Sci Total Environ ,631: 1371–1382.2018;
  • 55. Klimowska, A.; Amenda, K.; Rodzaj, W.; Wileńska, M.; Jurewicz, J.; Wielgomas, B. Evaluation of 1-year urinary excretion of eight metabolites of synthetic pyrethroids, chlorpyrifos, and neonicotinoids. Environ Int,145:106119. 2020;
  • 56. Radwan, M.; Jurewicz, J.; Wielgomas, B.; Piskunowicz, M.; Sobala, W.; Radwan, P.; Jakubowski, L.; Hawuł,a W.; Hankme W. The association between environmental exposure to pyrethroids and sperm aneuploidy. Chemosphere,128:42-8. 2015;
  • 57. Dziewirska, E.; Radwanm M.; Wielgomas, B.; Klimowska, A.; Radwan, P.; Kałużny, P.; Hanke, W.; Słodki, M.; Jurewicz, J. Human Semen Quality, Sperm DNA Damage, and the Level of Urinary Concentrations of 1N and TCPY, the Biomarkers of Nonpersistent Insecticides. Am J Mens Health,13(1):1557988318816598. 2019;
  • 58. Radwan, M.; Jurewicz, J.; Wielgomas, B.; Sobala, W.; Piskunowicz, M.; Radwan, P.; Hanke, W. Semen quality and the level of reproductive hormones after environmental exposure to pyrethroids. J Occup Environ Med,56(11):1113-9. 2014;
  • 59. Wielgomas, B.; Nahorski, W.; Czarnowski, W. Urinary concentrations of pyrethroid metabolites in the convenience sample of an urban population of Northern Poland. Int J Hyg Environ Health, 216(3):295-300. 2013;
  • 60. Klimowska, A.; Wielgomas, B. Off-line microextraction by packed sorbent combined with on solid support derivatization and GC-MS: Application for the analysis of five pyrethroid metabolites in urine samples. Talanta,176:165-171.2018;
  • 61. Wielgomas, B.; Piskunowicz, M. Biomonitoring of pyrethroid exposure among rural and urban populations in northern Poland. Chemosphere,93(10):2547-53.2013;
  • 62. Rodzaj, W.; Wileńska, M.; Klimowska, A.; Dziewirska, E.; Jurewicz, J.; Walczak-Jędrzejowska, R.; Słowikowska-Hilczer, J.; Hanke, W.; Wielgomas, B. Concentrations of urinary biomarkers and predictors of exposure to pyrethroid insecticides in young, Polish, urban-dwelling men. Sci Total Environ,773:145666.2021;
  • 63. Jurewicz, J.; Radwan, M.; Wielgomas, B.; Sobala, W.; Piskunowicz, M.; Radwan, P.; Bochenek, M.; Hanke, W. The effect of environmental exposure to pyrethroids and DNA damage in human sperm. Syst Biol Reprod Med,61(1):37-43.2015;
  • 64. Fetoui, H.; Feki, A.; Salah, G.B.; Kamoun, H.; Fakhfakh, F.; Gdoura, R. Exposure to lambda-cyhalothrin, a synthetic pyrethroid, increases reactive oxygen species production and induces genotoxicity in rat peripheral blood. Toxicol Ind Health, 31(5),433–41.2015;
  • 65. Al-Sabti, K.; Metcalfe, C.D. Fish micronuclei for assessing genotoxicity in water. Mutat. Res,343(2–3),121–135.1995;
  • 66. Kirsch-Volders, M.; Vanhauwaert, A.; De Boeck, M.; Decordier, I. Importance of detecting numerical versus structural chromosome aberrations. Mutat. Res,504(1–2),137–148.2002;
  • 67. Kanellis, J.; Mudge, .SJ.; Fraser, S.; Katerelos, M.; Power, D.A. Redistribution of cytoplasmic VEGF to the basolateral aspect of renal tubular cells in ischemia-reperfusion injury. Kidney Int ,57, 2445–2456.2000;
  • 68. Kanellis, J.; Paizis, K.; Cox, A.J.; Stacker, S.A.; Gilbert, R.E.; Cooper, M,E,; Power, D.A. Renal ischemia-reperfusion increases endothelial VEGFR-2 without increasing VEGF or VEGFR-1 expression. Kidney Int ,61, 1696–1706.2002;
  • 69. Aboutaleb, N.; Jamali, H.; Abolhasani, M.; Pazoki,H.; Toroudi, H. Lavender oil (Lavandula angustifolia) attenuates renal ischemia/reperfusion injury in rats through suppression of inflammation, oxidative stress and apoptosis. Biomed Pharmacother ,110,9-19. 2019;
  • 70. Tögel, F.; Weiss, K.; Yang, Y.; Hu, Z.; Zhang, P.; Westenfelder, C. Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol-Ren Physiol ,292,F1626–1635.2007;
  • 71. Kang, D.H.; Hughes, J.; Mazzali, M.; Schreiner, G.F.; Johnson, R.J. Impaired angiogenesis in the remnant kidney model: II. Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function. J Am Soc Nephrol JASN ,12, 1448–1457.2001;
  • 72. Kang, D.H.; Joly, A.H.; Oh, S.W.; Hugo, C.; Kerjaschki, D.; Gordon, K.L.; Mazzal, M.; Jefferson, J.A.; Hughes, J.; Madsen, K.M.; Schreiner, G.F.; Johnson, R.J. Impaired angiogenesis in the remnant kidney model: I. Potential role of vascular endothelial growth factor and thrombospondin-1. J Am Soc Nephrol JASN ,12, 1434–1447.2001;
  • 73. Hyder, S.M.; Nawaz, Z.; Chiappetta, C.; Stancel, G.M. Identification of functional estrogen response elements in the gene coding for the potent angiogenic factor vascular endothelial growth factor. Cancer Res ,60, 3183–3190.2000;
  • 74. Aitken, A.E.; Richardson, T,A.; Morgan, E,T. Regulation of drug-metabolizing enzymes and transporters in inflammation. Annu Rev Pharmacol Toxicol ,46, 123–149.2006;
  • 75. Morgan, E.T. Regulation of cytochrome p450 by inflammatory mediators: why and how? Drug Metab Dispos Biol Fate Chem ,29, 207–212.2001;
  • 76. Morgan, E.T.; Li-Masters, T.; Cheng, P.Y. Mechanisms of cytochrome P450 regulation by inflammatory mediators. Toxicology ,181–182, 207–210.2002;
  • 77. Luedde, T.; Schwabe, R.F. NF-κB in the liver--linking injury, fibrosis and hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol,8(2),108–118. 2011;
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bba00fdd-a0c9-4ecb-8136-26db61f255ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.