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Abstract. The object of this paper is to extend the method of extremal length to Klein
surfaces by solving conformally invariant extremal problems on the complex double. Within
this method we define the extremal length, the extremal distance, the conjugate extremal
distance, the modulus, the reduced extremal distance on a Klein surface and we study their
dependences on arcs.
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1. INTRODUCTION

In this paper we extend the method of extremal length to Klein surfaces. The technique
is to apply the classical method to the complex double of a Klein surface, which is
a Riemann surface endowed with an antianalytic involution (see [4]).

Practically, using a technique in which objects on Klein surfaces are lifting to sym-
metric objects on the complex double, we define some numerical dianalytic invariants
related to a Klein surface X and a family of rectifiable arcs on X and we study their
dependence on the corresponding arcs. These invariants are global lengths and are
obtained by solving conformally invariant extremal problems on the complex double.
For this purpose we define the extremal length, the extremal distance, the conjugate
extremal distance, the reduced extremal distance and the modulus on a Klein surface.

Their usefulness result from the fact that they satisfy a principle of majorization
and certain extremal lengths or their upper and lower bounds can be computed in
terms of classical conformal invariants. Ahlfors [2] introduced a formula that calculates
extremal length through the Dirichlet integral of a certain harmonic measure. This
formula expressed the capacity of a set in the plane in terms of extremal length.
A classical result for harmonic functions shows that every closed set of zero newtonian
capacity is removable for the class of bounded harmonic functions.
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Serrin [20] has generalized this theorem and found the notion of capacity useful in
connection with the question of removable singularities of solutions to linear second
order elliptic partial differential equations and proved similar results for a class of
nonlinear equations (see [21]).

The method of extremal length is based on the well known length-area principle
and had a huge contribution to the development of the theory of quasiconformal
mappings which is closely related to the nonlinear elasticity theory (see [6] and [7]).

The generalization of the method to Riemann surfaces, by introducing the extremal
length as a conformally invariant measure of arcs families, is due to A. Beurling and
was developed in collaboration with L. Ahlfors (see [2]). Teichmuller considered special
cases of extremal problems on nonorientable surfaces by passing to the complex double.
He introduced the notions of meromorphic functions, n-differentials and divisors on
bordered nonorientable Riemann surfaces (see [22]). Spencer and Schiffer [18] extended
the investigation of finite Riemann surfaces from the point of view of functional
analysis. Basic function theory on Klein surfaces and the relation between compact
Klein surfaces and real algebraic functions are developed in [4]. Morphisms of Klein
surfaces are studied in [4] and [5]. Boundary value problems on nonorientable surfaces
are studied in [9] and [16].

2. PRELIMINARIES

A connected topological Hausdorff space X is a surface with boundary if every point
P̃ ∈ X has an open neighborhood Ũ , which is homeomorphic to a relatively open
subset of the closed upper half-plane. A homeomorphism h : Ũ → h(Ũ) is called a local
parameter at the point P̃ ∈ Ũ . The pair (Ũ , h) is called a chart.

Let A and B be nonempty open sets in the closed upper half-plane. A continuous
map of A into B is analytic on A (resp., antianalytic on A) if it extends to an analytic
(resp., antianalytic) function on some neighborhood of A in C into C. If f or the
complex conjugate of f is analytic on each connected component of the set A, then f
is called dianalytic on A (see [4]).

An atlas of the surface X is a family A = {(Ũi, hi) |i ∈ I } of charts, where (Ũi)i∈I is
an open cover of X. An atlas is dianalytic if all of its transition functions are dianalytic.
Two dianalytic atlases are called equivalent if their union is a dianalytic atlas as well.
An equivalence class A of dianalytic atlases of X is called a dianalytic structure on X.

A Klein surface is a surface with boundary endowed with a dianalytic structure A
and will be denoted with X. Observe that a classical Riemann surface is an orientable
Klein surface with empty boundary.

In our study we are using the complex double of a Klein surface. A study of this
concept can be found in [18] and some of its applications are developed in [10] and [19].

We present a theorem which relates a Klein surface to its complex double. We refer
to [4] for the proof and more details.
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Theorem 2.1. Let X be a Klein surface and O2 the complex double of the surface X.
If π : O2 → X is the double cover of the Klein surface X by O2, then there is an
antianalytic involution k : O2 → O2, with π ◦ k = π. More, X is dianalytically
equivalent with O2/ 〈k〉, where 〈k〉 is the group generated by k. Also, given a Riemann
surface O2 and an antianalytic involution k, the orbit space O2/ 〈k〉 can be endowed
with a unique structure of Klein surface, such that f : O2 → O2/ 〈k〉 is a morphism of
Klein surfaces.

Thus we can identify the Klein surface X with the orbit space O2/ 〈k〉 . For more
details see [4].

The involution k is called a symmetry of O2.The pair (O2, k) has been called
a symmetric Riemann surface and the two corresponding points P and k(P ), with
P ∈ O2 are called symmetric points.

By definition, a set ∆ of O2 is called symmetric if k(∆) = ∆.
A function f defined on a symmetric set is called a symmetric function if f = f ◦k.
To simplify the notation, we identify the points of O2, respectively X, with their

images on C from the corresponding local parameters, with respect to the relation
between the dianalytic atlas on X and the analytic atlases on O2.

Suppose ∆̃ is a parametric disk ofX.Then π−1(∆̃) = ∆∪k(∆) is a pair of symmetric
disks of O2. If z is the local parameter on ∆, then k(z) is the local parameter on k(∆)
and z̃ = π(z) = {z, k(z)} is the local parameter on ∆̃.

If F : X → C is a complex function on X, that can take the value ∞ only on finite
sets, then its lifting f to O2 is given by

f(z) = f(k(z)) = F (z̃), z ∈ O2, z̃ = π(z). (2.1)

More, to any function g : O2 → C, we can associate a function f = g + g ◦ k which is
a symmetric function on O2 and (2.1) defines a function F on X.

Any Riemann surface O2 of class C1 is endowed with a Riemannian metric
determined by the line element

ds = ρ |dz + µdz| ,

where ρ ≥ 0. If µ is identically zero, then the metric

ds(z) = ρ |dz|

and the local parameter z are called isothermal.
We modify this metric and define a symmetric metric on O2 by

dσ = 1
2 (ds+ ds ◦ k) .

Then
dΣ(z̃) = dσ(z) = dσ(k(z)), z̃ = π(z) ∈ X

is a metric on X. The metric dΣ is invariant with respect to the group of conformal
or anticonformal transition functions of X.
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The area element dA on the Klein surface X is given by

dA(z̃) = dA(z) = dA(k(z)),

where dA is the symmetric area element on O2. For a complete treatment of the
integration theory on Klein surfaces, see [8].

It is known that the isothermal metric ds defines a natural analytic structure on O2.
Similar to the orientable case, the isothermal metric dσ defines a dianalytic structure
on the Klein surface X. See [3] for details.

Let γ be a σ-rectifiable Jordan arc γ, parametrized in terms of the arc σ-length. Let
γ : z = z(s) = x(s)+ iy(s), s ∈ [0, l] parameterized by the σ- arc length l of γ. The unit
inward normal vector to γ at z(s) is nσ = (− dy

dσ ,
dx
dσ ) and we denote by ∂

∂nσ
the inward

normal derivative, with respect to the symmetric metric dσ. A transformation formula
for the normal derivative with respect to dσ can be found in [9].

Let O2 be a region in the complex plane, bounded by a finite number of analytic
Jordan curves. Then O2 = O2 ∪ ∂O2 can be conceived as a bordered Riemann surface
(see [18]). Since X is dianalytically equivalent with O2/ 〈k〉, there is a pair of sheets
(D1, D2) of O2 over X, such that O2 = D1∪D2 where D2 = k(D1). The sets D1and D2
are complete sets of representatives of the factor set O2/ 〈k〉 .We use the representation
of O2 as a symmetric region D.

3. THE EXTREMAL LENGTH

3.1. THE EXTREMAL LENGTH ON THE COMPLEX DOUBLE

Let D be a symmetric region bounded by a finite number of σ-rectifiable Jordan curves
and Γ∪ k(Γ) a symmetric family whose elements are σ-rectifiable arcs in D. We define
a number which is invariant under conformal mappings, with respect to the lengths
of the arcs and the family of Riemannian metrics which are also conformal to the
euclidean metric.

Let Φ be a linear density on D. Then Φ is defined such that in terms of the local
variables the metric |ϕ(z)| |dz| is conformally invariant. Without loss the generality,
we can assume that ϕ ≥ 0 and ϕ is lower semicontinuous. For more details, see [3].

The Φ-lengths of two arcs γ and k ◦ γ, where γ ∈ Γ, that is their lengths with
respect to the Φ-metric are

lΦ(γ) =
∫

γ

ϕ(z) |dz| and lΦ(k(γ)) =
∫

γ

ϕ̂(k(z)) |dk(z)| ,

where ϕ̂(k(z)) |dk(z)| is the local representation of the linear density Φ, in k(∆).
For details, see [8].
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Remark 3.1. We supposed that γ is contains in a parametric disk ∆. We identifed γ
and k ◦γ, with their images in the complex plane, from the corresponding charts.When
∆ is an open set, a σ-rectifiable curve γ which does not go through any critical point
can be subdivided into intervals each one of which lies in a parametric disk. Therefore,
we can consider Γ a nonempty family of curves, where each curve consists of countably
many arcs. For a treatment of the notion of extremal length for a family of chains on
a Riemann surface, see [15].

We can introduce a conformal parameter w, in terms of which the representation
of Φ is identically equal to one. The natural parameter is given by the integral
w = ψ(z) =

∫
ϕ(z)dz. The arc γ is mapped by ψ onto an arc γ′. The Φ-length of γ

can be computed by means of the differential

|dw| = ϕ(z) |dz| ,

which is called the length element of the Φ-metric. Then in terms of the local parame-
ter w, we get

lΦ(γ) =
∫

γ′

|dw| =
∫

γ

ϕ(z) |dz| .

Thus, the Φ-length of γ is the Euclidean length of γ′.
The corresponding area element is ϕ(z)dxdy, which is invariant under a change of

parameter on D. The Φ-area of D, namely the total area of D, is defined by

AΦ(D) =
∫∫

D

(ϕ(z))2
dxdy.

Following Ahlfors and Sario [3], the minimum Φ-length of the family Γ, is defined by

lΦ(Γ) = inf
γ∈Γ

lΦ(γ).

Proposition 3.2. Under a conformal mapping symmetric regions are transformed
into symmetric regions.

Proof. Let D be a symmetric region bounded by a finite number of σ-rectifiable Jordan
arcs and k a symmetry of D. Let z′ = h(z) be a conformal mapping which takes
D into a region D′. We define k′ : D′ → D′, such that h(k(z)) = k′(h(z)), namely
k′ = h ◦ k ◦h−1. Then k′ is an anticonformal involution, without fixed points. Thus, k′
is a symmetry of D′. For more details, see [9].

The extremal length of Γ in D is defined by

λD(Γ) = sup
Φ

lΦ(Γ)2

AΦ(D) ,

where the supremum is over all lower semicontinuous densities Φ which are not
identically 0.
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The extremal length satisfy the comparison principle (see [3]):

Proposition 3.3. Let Γ1, Γ2 be families of curves on D. If every γ1 ∈ Γ1 contains
a γ2 ∈ Γ2, then λD(Γ1) ≥ λD(Γ2).

More, are valid two basic laws of composition:

Proposition 3.4. Let D1 and D2 be disjoint open sets in D.Let Γ1, Γ2 consist of
curves in D1, D2 respectively,and Γ is a family of curves in D.

1. If every γ ∈ Γ contains a γ1 ∈ Γ1 and a γ2 ∈ Γ2, then

λD(Γ) ≥ λD(Γ1) + λD(Γ2).

2. If every γ1 ∈ Γ1 and every γ2 ∈ Γ2 contains a γ ∈ Γ, then

1
λD(Γ) ≥

1
λD(Γ1) + 1

λD(Γ2) .

A density Φs is extremal for the family Γ in D, if lΦs (Γ)2

AΦs (D) = λD(Γ). To compute
an extremal length means to guess what the extremal metric should be and then to
prove that the metric is indeed extremal.

By analogy, with the extremal length of Γ, since k is an involution, we define the
extremal length of the family k(Γ), by

λD(k(Γ)) = sup
Φ

lΦ(k(Γ))2

AΦ(D) .

Since the extremal length of Γ in O2 is not symmetric, the families Γ and k(Γ)
may have different extremal lengths.

We define the length λ(k)
D (Γ) of Γ on D by

λ
(k)
D (Γ) = λD(Γ) + λD(k(Γ)). (3.1)

Proposition 3.5. The length λ
(k)
D (Γ) is symmetric, namely is invariant with

respect to k.

Proof. Since k is an involution, λ(k)
D (Γ) = λ

(k)
D (k(Γ)).

The length λ(k)
D (Γ) is called the symmetric extremal length of Γ.

Remark 3.6. By Proposition 3.5, we obtain that the families Γ and k(Γ) have the
same symmetric extremal length.

Proposition 3.7. The symmetric extremal length of Γ is a conformal invariant.

Proof. Let D be a symmetric region bounded by a finite number of σ-rectifiable Jordan
arcs and k a symmetry of D. Let z′ = h(z) be a conformal mapping which takes D into
a symmetric region D′ endowed with the symmetry k′, such that h(k(z)) = k′(h(z)).
Let Γ ∪ k(Γ) be a symmetric family, whose elements are σ-rectifiable arcs in D. Then
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h takes Γ into Γ′ and k(Γ) into k′(Γ′).We can define Φ′ such that in terms of the
local variables ϕ |dz| = ϕ′ |dz′| .We obtain lΦ(γ) = lΦ′(γ′) and lΦ(k(γ)) = lΦ′(k′(γ′))
for any γ ∈ Γ, γ′ = h(γ). Then, lΦ(Γ) = lΦ′(Γ′) and lΦ(k(Γ)) = lΦ′(k′(Γ′)). Similarly,
AΦ(D) = AΦ′(D′). Thus it results that λ(k)

D (Γ) = λ
(k′)
D′ (Γ′).

Using different normalizations, we can obtain equivalent definitions for the extremal
length of Γ on D (see [3]). The usual normalization considers admissible densities.
By definition, a density Φ is admissible for the family Γ ∪ k(Γ), if lΦ(γ) ≥ 1 and
lΦ(k(γ)) ≥ 1, for every γ ∈ Γ.

The extremal length of Γ is defined by

1
λD(Γ) = inf

Φ
AΦ(D),

where the infimum is taken over all admissible densities Φ (see [11]).
The quantity M(Γ) = 1

λD(Γ) is referred to as the modulus of Γ.It is known that
the modulus is a conformal invariant.

Similarly, the modulus of k(Γ) is

M(k(Γ)) = 1
λD(k(Γ)) = inf

Φ
AΦ(k(D)),

where the infimum is taken over all admissible densities Φ.

Proposition 3.8. The modulus M(Γ) is symmetric, namely is invariant with
respect to k.

Proof. Since D is a symmetric region, we obtain M(Γ) = M(k(Γ)).

3.2. THE EXTREMAL LENGTH ON KLEIN SURFACES

The Klein surface X is the factor manifold of the symmetric Riemann surface O2 with
respect to the group 〈k〉. Then, by identifying the corresponding symmetric points
of D we obtain a region Ω bounded by a finite number of Σ-rectifiable Jordan arcs.
We consider a family Γ̃ whose elements are Σ-rectifiable arcs in Ω. A Σ-rectifiable
arc γ̃ in Γ̃, has two lifts from D. If the initial point of γ̃ is z̃0 = {z0, k(z0)} and if
γ is the lift of γ̃ on D from z0, then k ◦ γ is the lift of γ̃ on k(D) from k(z0). Then
π−1(γ̃) = γ ∪k(γ) and π−1(Γ̃) = Γ∪k(Γ), where Γ is the set of the σ-rectifiable arcs γ
in D, for which there exists Σ-rectifiable arcs γ̃ in Γ̃, such that γ is the lift of γ̃ on D.

The extremal length of Γ̃ in X is defined by

λΩ(Γ̃) = λ
(k)
D (Γ) = λ

(k)
D (k(Γ)).

Remark 3.9. By Proposition 3.5, it follows that λΩ(Γ̃) is well-defined on Ω.

By Propositions 3.5 and 3.7 we get

Proposition 3.10. The extremal length of Γ̃ is a dianalytic invariant.
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Similar to Riemann surfaces, we state a comparison principle (see [3]).

Proposition 3.11. Let Γ̃1 and Γ̃2 be families of curves in Ω, such that every γ̃1 ∈ Γ̃1
contains a γ̃2 ∈ Γ̃2. Then λΩ(Γ̃1) ≥ λΩ(Γ̃2).

Proof. We prove that λΩ1(Γ̃2) ≥ λΩ2(Γ̃2), where Ω1 and Ω2 are subregion of Ω.
Let π−1(Ωi) = Di ∪ k(Di), i = 1, 2 be the symmetric regions on the double cover.
By hypothesis, any γ̃1 ∈ Γ̃1 contains an arc γ̃2 ∈ Γ̃2. Let γ1 be the lift of γ̃1 on
D = π−1(Ω).Then, γ1 contains the lift γ2 of γ̃2 on D. Since the minimum lengths
lΦ(Γ1) and lΦ(Γ2) are compared with the total area ofD, using the comparison principle
for Riemann surfaces (see [3]), we get λD(Γ1) ≥ λD(Γ2). Because k is an involution, we
obtain the similar relation λD(k(Γ1)) ≥ λD(k(Γ2)). Then, for the symmetric extremal
lengths, we get λ(k)

D (Γ1) ≥ λ(k)
D (Γ2), which implies λΩ(Γ̃1) ≥ λΩ(Γ̃2).

The modulus of Γ̃ is defined by M(Γ̃) = M(Γ) = M(k(Γ)).
By Proposition 3.8, it follows that M(Γ̃) is well defined on Ω.

4. THE EXTREMAL DISTANCE

4.1. THE EXTREMAL DISTANCE ON THE DOUBLE COVER

Let D be a symmetric region bounded by a finite number of σ-rectifiable Jordan arcs.
We consider E1 and E2 two nonvoid disjoint sets on D. Take Γ the family of connected
arcs in D, which join E1 and E2.

The extremal length of the family Γ is called the extremal distance of E1 and E2
in D and is denoted by λD(E1, E2). Then, by definition

λD(E1, E2) = λD(Γ).

An extensive study of the extremal distance ona Riemann surface is developed in [3].
It is easy to see that k(Γ) represents the family of connected arcs in D, which join

k(E1) and k(E2). Therefore,

λD(k(E1), k(E2)) = λD(k(Γ)).

Next, we define the symmetric extremal distance of E1 and E2 on D, by

λ
(k)
D (E1, E2) = λ

(k)
D (Γ). (4.1)

Proposition 4.1. λ(k)
D (E1, E2) = λ

(k)
D (k(E1), k(E2)).

Proof. Since k is an involution, using (3.5) we obtain

λ
(k)
D (E1, E2) = λ

(k)
D (Γ) = λ

(k)
D (k(Γ)) = λ

(k)
D (k(E1), k(E2)).
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Remark 4.2. By Proposition 3.7 and Proposition 4.1, we obtain that the symmetric
extremal distance is a dianalytical invariant.

The extremal distance is associated with another conformal invariant, the Dirichlet
integral.

We consider the surface O2 given as the interior of the compact bordered Riemann
surface O2. We choose a boundary neighborhood O′2 ⊂ O2, with compact complement.

Following Ahlfors and Sario ([3]) for a continuous function f on the boundary of
O′2, there exists a unique harmonic function in O′2, which has the boundary values f
on the boundary of O′2 and whose normal derivative vanishes on the border of O2.

Without loss of generality, we can assume that the sets E1 and E2 consist of a finite
number of arcs which are contained in the boundary of D (see [3]).

Let u be the unique bounded harmonic function in D − (E1 ∪ E2) , which is 0
on E1, 1 on E2 and whose normal derivative vanishes on ∂D − (E1 ∪ E2) .

The existence and uniqueness of u results from the construction of the normal
operator L0 (see [3]).

The Dirichlet integral of u over the region D is defined by

D(u) =
∫∫

D

|∇u|2 dxdy.

According to a result due to Ahlfors and Sario [3], we find:

Proposition 4.3. The extremal distance, λD(E1, E2), between E1 and E2 is equal to
the reciprocal of the Dirichlet integral D(u).

Thus the “extremal metric”, namely a Φ for which the supremum is attained in
the definition of the corresponding extremal length is given by ϕ(z) |dz| = |∇u| |dz| .

Let û(z) = u(k(z)) be the unique bounded harmonic function in D −
(k(E1) ∪ k(E2)), which is 0 on k(E1), 1 on k(E2) and whose normal derivative vanishes
on ∂D − (k(E1) ∪ k(E2)). Similar with Proposition 4.3, we get the following result.

Proposition 4.4. The extremal distance, λD(k(E1), k(E2)), between k(E1) and
k(E2) is

λD(k(E1), k(E2) = 1
D(û) .

Theorem 4.5. The symmetric extremal distance of E1 and E2 on D is

λ
(k)
D (E1, E2) = 1

D(u) + 1
D(û) .

Proof. By (3.1), (4.1) and Propositions 4.3 and 4.4 we get the above result.

Another conformal invariant can be defined if we consider the family Γ of arcs that
separate E1 and E2. Then, an element γ ∈ Γ is a countable union of arcs in O2 and
the sets E1 and E2 are contains in different components of O2 − γ.
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The conjugate extremal distance of E1 and E2 on D is the extremal length of the
family Γ (see [3]). We denote it by λD(E1, E2).By definition

λD(E1, E2) = λD(Γ).
It is known to hold the following result (see [3]).

Proposition 4.6. λD(E1, E2) = 1
λD(Γ) .

It is easy to see that k(Γ) represents the family of arcs in D, which separate k(E1)
and k(E2). Therefore,

λD(k(E1), k(E2)) = 1
λD(k(Γ)) .

Next, we define the symmetric conjugate extremal distance of E1 and E2 on D, by

λ
(k)
D (E1, E2) = 1

λD(Γ) + 1
λD(k(Γ)) .

Proposition 4.7. λ(k)
D (E1, E2) = λ

(k)
D (k(E1), k(E2)).

Proof. Since k is an involution, using Proposition 3.5, we obtain

λ
(k)
D (E1, E2) = λ

(k)
D (Γ)

λD(Γ)λD(k(Γ)) = λ
(k)
D (k(Γ))

λD(Γ)λD(k(Γ)) = λ
(k)
D (k(E1), k(E2)).

Remark 4.8. By Propositions 3.7 and 4.7, we deduce that the symmetric conjugate
extremal distance is a dianalytic invariant.

Next, we define a symmetric reduced extremal distance for the complex double.
This extremal distance is computed in terms of harmonic functions with prescribed
singularities and boundary behaviour, whose existence follow from the main existence
theorem of the theory of normal operators (see [3, Theorem 3A], and [15]).

Let D be a symmetric region bounded by a finite number of σ-rectifiable Jordan
curves. Let E ∪ k(E) be the union of a finite number of symmetric closed arcs on the
boundary C. We consider z0 and k(z0) two symmetric points inside D. Let U1 and U2
be two symmetric, disjoint parametric disks corresponding to z0 and k(z0), respectively.
Suppose that z is a local parameter defined in a neighborhood of z0.Then k(z) is a local
parameter defined in a neighborhood of k(z0). For all sufficiently small positive values of
r we consider C1(r) = {z ∈ D : |z − z0| = r} and C2(r) = {w ∈ D : |w − k(z0)| = r}
the boundaries of the parametric disks U1 and U2, respectively.

Let Γ(r) be the family of connected arcs on D \ U1 which join C1(r) and E.The
extremal length of the arcs family Γ(r) is the extremal distance between C1(r) and E.
Using the first composition law (Proposition 3.4) we get the following result:
Proposition 4.9. λD(Γ(r)) + 1

2π log r is a decreasing function of r.
Proof. Suppose 0 < r < r′ and let Γ(r, r′) be the family of all connected arcs in the
annular region U1(r′) \ U1(r) which join C1(r) and C1(r′). By Proposition 3.4,

λD(Γ(r)) ≥ λD(Γ(r′)) + λD(Γ(r, r′)) ≥ λD(Γ(r′)) + 1
2π log r

′

r
,

where 1
2π log r′

r is the extremal distance of C1(r) and C1(r′) (see [17]).
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The preceding result guarantees that λD(Γ(r)) + 1
2π log r approaches a finite limit

as r → 0, namely the limit is the infimum taken over r positive and sufficiently small.
However, the number

d(z0, E) = lim
r→0

(
λD(Γ(r)) + 1

2π log r
)

it is neither positive nor a conformal invariant.
To eliminate these shortcomings, we define the number

λD(z0, E) = d(z0, E)− d(z0, C)

as the reduced extremal distance between z0 and E.
Similarly, the reduced extremal distance between k(z0) and k(E), is

λD(k(z0), k(E)) = d(k(z0), k(E))− d(k(z0), C).

We define the symmetric reduced extremal distance between z0 and E by

λ
(k)
D (z0, E) = λ(z0, E) + λ(k(z0), k(E)).

Since k is an involution, we get that λ(k)(z0, E) is symmetric, namely is invariant with
respect to k.

Proposition 4.10. λ(k)
D (z0, E) = λ

(k)
D (k(z0), k(E)).

We can relate the symmetric reduced extremal distance with certain invariants
numbers.

Let g = g(z, z0) be the L0-principal function having a negative logarithmic singu-
larity in z0. Thus g is harmonic on D \ {z0} , g is 0 on E and g = L0g on the rest of
the boundary, namely g has a vanishing normal derivative on the rest of the boundary.
Then

g(z, z0) = − log |z − z0|+ γ(E) + ε1(z),
where γ(E) is a constant and ε1(z)→ 0, as z → z0. Following Ahlfors [1] and using
Proposition 4.3, we obtain that

d(z0, E) = 1
2π [− log r + γ(E) + ε1(z)]

and
λD(z0, E) = 1

2π [γ(E)− γ(C)] ,

where γ(C) is the Robin constant relative to z0. Similarly, gk = g(z, k(z0)) is
the L0-principal function having a negative logarithmic singularity in k(z0). We obtain

λD(k(z0), E) = 1
2π [γ(k(E))− γ(Ck)] ,

where γ(Ck) is the Robin constant relative to k(z0).
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Consequently,

λ
(k)
D (z0, E) = 1

2π [γ(E) + γ(k(E))]− 1
2π [γ(C) + γ(Ck)] .

and the right side is a dianalytic invariant.

4.2. THE EXTREMAL DISTANCE ON THE KLEIN SURFACE

The Klein surface X is the factor manifold of the symmetric Riemann surface O2
with respect to the group 〈k〉. Then, Ω is obtained from the symmetric region D by
identifying the corresponding symmetric points.

By Theorem 2.1, if E is a set in the symmetric region D, then k(E) is a set in
k(D) = D and E ∪ k(E) projects by π into a set Ẽ in Ω. Conversely, for every set Ẽ
in Ω, the set π−1(Ẽ) is a symmetric set in D.

We consider Ẽ1 and Ẽ2 two nonvoid disjoint sets on Ω. Let Γ̃ be the family of
connected arcs in Ω, which join Ẽ1 and Ẽ2 and Γ̃ the family of arcs that separate
Ẽ1 and Ẽ2. Then π−1(Ẽi) = Ei ∪ k(Ei), i = 1, 2, are symmetric sets in D. Also,
π−1(Γ̃) = Γ ∪ k(Γ) and π−1(Γ̃) = Γ ∪ k(Γ) are the corresponding symmetric sets of
arcs in the symmetric region D.

We denote by λΩ(Ẽ1, Ẽ2) the extremal distance of Ẽ1 and Ẽ2 in Ω.
We define the extremal distance of Ẽ1 and Ẽ2 in Ω by

λΩ(Ẽ1, Ẽ2) = λ
(k)
D (E1, E2). (4.2)

Remark 4.11. By Remark 4.2, the extremal distance in Ω is well defined.

We obtain the following explicit formula for the extremal distance in Ω.

Theorem 4.12. The extremal distance of Ẽ1 and Ẽ2 in Ω is

λΩ(Ẽ1, Ẽ2) = 1
D(u) + 1

D(û) .

Proof. We are using definition (4.2) and Theorem 4.5.

We denote by λΩ(Ẽ1, Ẽ2) the conjugate extremal distance of Ẽ1 and Ẽ2 in Ω.
We define the conjugate extremal distance of Ẽ1 and Ẽ2 in Ω by

λΩ(Ẽ1, Ẽ2) = λ
(k)
D (E1, E2). (4.3)

Remark 4.13. By Remark 4.8, the conjugate extremal distance in Ω is well defined.

Let z̃0 be a point in Ω. The reduced extremal distance between z̃0 and Ẽ is denoted
by λΩ(z̃0, Ẽ) and by definition,

λΩ(z̃0, Ẽ) = λ
(k)
D (z0, E).
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Because the Klein surfaces X and O2/ 〈k〉 are dianalytically equivalent, a boundary
value problem on Ω is equivalent with a similar problem on the symmetric region D
(see [16]). Klein surfaces are the most general two-manifolds that support harmonic
functions.

Assume that the sets Ẽ1 and Ẽ2 consist of a finite number of arcs which are
contained in the boundary of Ω.

Consider the mixed Dirichlet–Neumann problem on X for harmonic functions




∆U = 0 on Ω \ (Ẽ1 ∪ Ẽ2),
U = 0 on Ẽ1,

U = 1 on Ẽ2,
∂U
∂nΣ

= 0 on ∂Ω \ (Ẽ1 ∪ Ẽ2).

(4.4)

We define D = π−1(Ω). Then D is a symmetric region bounded by a finite number of
σ-rectifiable Jordan curves.

The mixed Dirichlet–Neumann problem (4.4) on X is equivalent with the following
mixed Dirichlet–Neumann problem for harmonic functions on O2





∆u = 0 on D \ {Ei ∪ k(Ei) | i ∈ {1, 2}} ,
u = 0 on E1 ∪ k(E1),
u = 1 on E2 ∪ k(E2),
∂u
∂nσ

= 0 on ∂D \ {Ei ∪ k(Ei) | i ∈ {1, 2}} .

(4.5)

The Dirichlet problem on Klein surfaces is studied in [16].
Using the maximum principle for harmonic functions, it follows that the mixed

Dirichlet–Neumann problem has a unique solution for the region D.
Various topics at the interplay between complex analysis and partial differential

equations are developed in [12] and [14].
Since k is an antianalytic involution, the symmetry of D implies that the prescribed

values of the normal derivative satisfy the compatibility condition
∫

∂D

∂u

∂nσ
dσ = 0.

The symmetric conditions on the boundary imply symmetric solutions for
Problem 4.5.
Proposition 4.14. A solution u of the problem 4.5 is a symmetric function on D.
Proof. Let u be a solution of Problem 4.5. We define uk : D → R by uk = 1

2 (u+ u ◦ k) .
Then ∆uk = 0 on D \ {Ei ∪ k(Ei) |i ∈ {1, 2}} , uk = 0 on E1 ∪ k(E1), uk = 1 on
E2∪k(E2) and ∂uk

∂nσ
= 0 on ∂D\{Ei ∪ k(Ei) |i ∈ {1, 2}} . Therefore, uk is also a solution

of the problem 4.5. The uniqueness of the solution yields uk = u on D, therefore
u = u ◦ k on D.

Consequently, we obtain the solution of the mixed Dirichlet–Neumann problem on
the region Ω.
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Theorem 4.15. The solution of the mixed Dirichlet–Neumann problem 4.4 is the
function U defined on Ω, by the relation u = U ◦ π, where π is the canonical projection
of O2 on X and u is the solution of the mixed Dirichlet–Neumann problem 4.5 on
the symmetric region D.

Proof. By definition, ∆U(ζ̃) = ∆u(ζ) = 0, for all ζ̃ ∈ Ω \ (Ẽ1 ∪ Ẽ2), where ζ̃ = π(ζ).
Thus, U is a harmonic function on Ω \ (Ẽ1 ∪ Ẽ2). Also,

U(ζ̃) = u(ζ) = u(k(ζ)) = 0 on Ẽ1,

U(ζ̃) = u(ζ) = u(k(ζ)) = 1 on Ẽ2

and
∂U

∂nΣ
(ζ̃) = ∂U

∂nσ
(ζ) = ∂U

∂nσ
(ζ) = 0

on ∂Ω \ (Ẽ1 ∪ Ẽ2). Due to the uniqueness of the solution, the function U defined
on Ω by

U(ζ̃) = u(ζ) = u(k(ζ)),

for all ζ̃ in Ω, where ζ̃ = π(ζ), is the solution of the mixed Dirichlet–Neumann
problem 4.4 on Ω.

We conclude the following result:

Proposition 4.16. The extremal distance λD(E1 ∪ k(E1), E2 ∪ k(E2)) of E1 ∪ k(E1)
and E2 ∪ k(E2) is 1/(D(u)).

Since k is an involution, we get

Proposition 4.17. The extremal distance λD(E1∪k(E1), E2∪k(E2)) is a dianalytical
invariant.

4.3. THE EXTREMAL DISTANCE ON THE MÖBIUS STRIP

Let Ar be the annulus represented as

Ar =
{
z ∈ C : 1

r
≤ |z| ≤ r

}
, r > 1.

The Möbius strip, denoted by Mr, is obtained from Ar by identifying the points z and
−1/z. Let k : Ar → Ar defined by k(z) = −1/z an antianalytic involution without
fixed points of Ar. Then (Ar, k) is a symmetric Riemann surface and the orbit space
Ar/ 〈k〉 is the Möbius strip

Mr =
{
z̃ : z̃ = {z, k(z)} , z ∈ Ar

}
.

The Möbius strip is obtained by cutting the ring along the real axis in the z-plane
and joining the two halves together along corresponding boundaries. Thus, the annulus
AR with points z and −1/z identified is a canonical form for the Möbius strip.
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If E1 = {z ∈ C : |z| = r} and E2 =
{
z ∈ C : |z| = 1

r

}
are the two contours of Ar,

then the extremal distance between E1 and E2 (see [3]) is

λD(E1, E2) = 1
π

log r.

Since E2 = k(E1) and E1 = k(E2), we obtain λD(k(E1), k(E2)) = λD(E1, E2).
Therefore the extremal distance of Ẽ1 and Ẽ2 in Ω is 2

π log r.
The conjugate extremal distance λD(E1, E2) is the extremal length of the family

of closed curves that separate the contours E1 and E2. We get

λD(E1, E2) = π

log r .

Again, the conditions E2 = k(E1) and E1 = k(E2) imply

λD(k(E1), k(E2)) = λD(E1, E2).

Therefore the conjugate extremal distance of Ẽ1 and Ẽ2 in Ω is 2π
log r .
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