PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Czas zwrotu śladu węglowego termomodernizacji – kiedy się opłaca?

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Carbon Payback Period (CPP) of thermal modernization – when does it pay off?
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono kompleksowe porównanie okresu zwrotu emisji dwutlenku węgla (CPP) dla wybranych materiałów izolacyjnych w połączeniu z wybranymi typowymi przegrodami budowlanymi oraz pokazano, jak szybko kończy się okres zwrotu gazów cieplarnianych w produkcji materiałów izolacyjnych. Poszczególne materiały izolacyjne (wełna kamienna i szklana, styropian (EPS), polistyren ekstrudowany (XPS), poliuretan (PUR) i celuloza) zostały przeanalizowane w odniesieniu do różnych typów ścian (siedem typów), w różnych lokalizacjach (Polska, Niemcy, Czechy, Austria, Finlandia, Europa) i dla różnych źródeł energii (pięć typów źródeł). Po uwzględnieniu śladu węglowego zawartego w materiałach izolacyjnych, wraz z potencjalnymi redukcjami operacyjnych emisji gazów cieplarnianych, określono (wyrażony w latach) okres zwrotu emisji dwutlenku węgla (CPP).
EN
This article presents a comprehensive comparison of the carbon payback periods (CPP) for selected insulation materials in combination with selected typical building envelopes and demonstrates the rate of greenhouse gas payback in the production of insulation materials. Individual insulation materials (stone wool, glass wool, expanded polystyrene (EPS), extruded polystyrene (XPS), polyurethane (PUR), and cellulose) were analyzed in seven different wall types, in different locations (Poland, Germany, Czech Republic, Austria, Finland, Europe), and for five different energy sources. After considering the carbon footprint of the insulation materials, along with the potential reductions in operational greenhouse gas emissions, the carbon payback periods (CPP) were determined (expressed in years).
Czasopismo
Rocznik
Strony
62--70
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wz.
Twórcy
  • Politechnika Wrocławska
Bibliografia
  • 1. European Parliament and the Council Directive (EU) 2010/31 of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings (Recast), EU, Brussels. accessed, Available online: http://data.europa.eu/eli/dir/2010/31/oj.
  • 2. European Parliament and the Council Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2010/31/EU on the Energy Performance of Buildings and Directive 2012/27/EU on Energy Efficiency, EU, Brussels. Available online: http://data.europa.eu/eli/dir/2018/844/oj/eng.
  • 3. European Commission. 2050 Long-Term Strategy. Available online: https://ec.europa.eu/clima/policies/strategies/2050_en.
  • 4. European Commission. 2050 Long-Term Strategy. Available online: https://ec.europa.eu/clima/policies/strategies/2050_en.
  • 5. M. Rousselot, F. Pinto Da Rocha, „Energy Efficiency Trends in Buildings in the EU”, Odyssee-Mure, Policy Brief. 2021. Available online: https://www.odyssee-mure.eu/publications/policybrief/buildings-energy-efficiency-trends.html.
  • 6. European Commission, Renovation Wave: Doubling the Renovation Rate to Cut Emissions, Boost Recovery and Reduce Energy Poverty. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_20_1835.
  • 7. COM (2021) 558, Proposal for a Directive 2012/27/EU of the European Parliament and the Council on Energy Efficiency (Recast), EU, Brussels. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0558.
  • 8. European Commission. Directorate-General for Energy, Comprehensive Study of Building Energy Renovation Activities and the Uptake of Nearly Zero-Energy Buildings in the EU: Final Report, Publications Office. 2019. Available online: https://data.europa.eu/doi/10.2833/14675.
  • 9. Visiongain. Building Thermal Insulation Market Analysis & Forecast 2017–2027, 2017. Available online: https://www.visiongain.com/report/building-thermal-insulation-market-analysisforecasts-2017-2027/.
  • 10. „Opracowanie metodologii i przeprowadzenie badania skali działań termomodernizacyjnych budynków mieszkalnych wielomieszkaniowych w celu poprawy ich energochłonności oraz ocena potrzeb i planowanych działań w tym kierunku”, Główny Urząd Statystyczny, Warszawa 2018.
  • 11. S. S. Filate, „Investigation of an Energy Refurbishment Concept for Office Building Using Nanogel/Aerogel Insulation Plaster and Replaced Windows by Building Simulation”, Master Programme in Energy Technology; Uppsala Universitet: Uppsala, Sweden, 2014. Available online: https://www.diva-portal.org/smash/get/diva2:772909/ATTACHMENT01.pdf.
  • 12. G. Evola, G. Margani, „Energy retrofit towards net zeb, Application of BIPV on an Apartment Block in Southern Italy. In Proceedings of the Architectural Research through to Practice”, 48th International Conference of the Architectural Science Association, Genoa, Italy, 10–13 December 2014.
  • 13. E. Hoxha, G. Habert, S. Lasvaux, J. Chevalier, R. Le Roy, „Influence of construction material uncertainties on residential building LCA reliability”, J. Clean. Prod. 2017, 144, 33–47. https://doi.org/10.1016/j.jclepro.2016.12.068.
  • 14. A. Passer, H. Kreiner, P. Maydl, „Assessment of the environmental performance of buildings: A critical evaluation of the influence of technical building equipment on residential buildings”, „The International Journal of Life Cycle Assessment” 2012, 17, 1116–1130.
  • 15. E. Hoxha, T. Jusselme, „On the necessity of improving the environmental impacts of furniture and appliances in net-zero energy buildings”, „Science of the Total Environment” 2017, 596–597, 405–416. https://doi.org/10.1016/j.scitotenv.2017.03.107.
  • 16. BPIE. Factsheet 97% of Buildings in the EU Need to Be Upgraded. 2017. Available online: http://bpie.eu/wp-content/uploads/2017/12/State-of-the-building-stock-briefing_Dic6.pdf (accessed on 1 September 2022).
  • 17. T. Ramesh, R. Prakash, K. K. Shukla, „Life cycle energy analysis of buildings: An overview”, „Energy and Buildings” 2010, 42, 1592–1600.10.1016/j.enbuild.2010.05.007.
  • 18. T. Ibn-Mohammed, R. Greenough, S. Taylor, L. Ozawa-Meida, A. Acquaye, „Operational vs. embodied emissions in buildings – A review of current trends”, „Energy and Buildings” 2013, 66, 232–245. https://doi.org/10.1016/j.enbuild.2013.07.026.
  • 19. S. Yard, „Developments of the payback method”, „International Journal of Production Economics”, 2000, 67, 155–167. https://doi.org/10.1016/S0925-5273(00)00003-7.
  • 20. F. Ardente, M. Beccali, M. Cellura, M. Mistretta, „Energy and environmental benefits in public buildings as a result of retrofit actions”, „Renewable and Sustainable Energy Reviews” 2011, 15, 460–470. https://doi.org/10.1016/j.rser.2010.09.022.
  • 21. F. Asdrubali, I. Ballarini, V. Corrado, L. Evangelisti, G. Grazieschi, C. Guattari, „Energy and environmental payback times for an NZEB retrofit”, „Building and Environment” 2019, 147, 461–472. https://doi.org/10.1016/j.buildenv.2018.10.047.
  • 22. B. Berggren, M. Hall, M. Wall, „LCE analysis of buildings – Taking the step towards net zero energy buildings”, „Energy and Buildings” 2013, 62, 381–391. https://doi.org/10.1016/j.enbuild.2013.02.063.
  • 23. L. Lu, H. X. Yang, „Environmental payback time analysis of a roofmounted building-integrated photovoltaic (BIPV) system in Hong Kong”, „Applied Energy” 2010, 87, 3625–3631. https://doi.org/10.1016/j.apenergy.2010.06.011.
  • 24. C. Zhang, M. Hu, B. Laclau, T. Garnesson, X. Yang, A. Tukker, „Energycarbon-investment payback analysis of prefabricated envelope-cladding system for building energy renovation: Cases in Spain, the Netherlands, and Sweden”, „Renewable and Sustainable Energy Reviews” 2021, 145, 111077. https://doi.org/10.1016/j.rser.2021.111077.
  • 25. F. Ardente, M. Beccali, M. Cellura, M. Mistretta, „Energy and environmental benefits in public buildings as a result of retrofit actions”, „Renewable and Sustainable Energy Reviews” 2011, 15, 460–470. https://doi.org/10.1016/j.rser.2010.09.022.
  • 26. M. Beccali, M. Cellura, M. Fontana, S. Longo, M. Mistretta, „Energy retrofit of a single-family house: Life cycle net Energy saving and environmental benefits”, „Renewable and Sustainable Energy Reviews” 2013, 27, 283–293. https://doi.org/10.1016/j.rser.2013.05.040.
  • 27. EN 15804:2012, Sustainability of Construction Works – Environmental Product Declarations – Core Rules for the Product Category of Construction Products. The European Committee for Standardization: Brussels, Belgium, 2012.
  • 28. ISO 14040, Environmental Management–Life Cycle Assessment– Principles and Framework. International Organisation for Standardisation: Geneva, Switzerland, July 2006. Available online: https://www.iso.org/standard/37456.html
  • 29. Passive House Requirements, Passive House Institute. Available online: https://passivehouse.com/02_informations/02_passivehouse-requirements/02_passive-house-requirements.htm
  • 30. Commission Delegated Regulation (EU) No 811/2013 of 18 February 2013 Supplementing Directive 2010/30/EU of the European Parliament and of the Council with Regard to the Energy Labelling of Space Heaters, Combination Heaters, Packages of Space Heater, Temperature Control and Solar Device and Packages of Combination Heater, Temperature Control and Solar Device. European Commission. Brussels. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013R0811&from=E
  • 31. I. Sartori, A. Napolitano, K. Voss, „Net zero energy buildings: A consistent definition framework”, „Energy and Buildings” 2012, 48, 220–232. https://doi.org/10.1016/j.enbuild.2012.01.032.
  • 32. M. Sunikka-Blank, R. Galvin, „Introducing the prebound effect: The gap between performance and actual energy consumption”, „Building Research & Information” 2012, 40, 260–273. https://doi.org/10.1080/09613218.2012.690952.
  • 33. EN 52000-1:2017-10 (EN) ISO 52000-1:2017, Energy performance of buildings – Overarching EPB assessment – Part 1: General framework and procedures, International Organization for Standardization, Geneva, Switzerland.
  • 34. Regulation of the Minister of Infrastructure and Development of 27 February 2015 on the Methodology for Determining the Energy Performance of a Building or Part of a Building and Energy Performance Certificates. J. Laws 2015, item 376, p.6.
  • 35. DIN V 18599:2007-02, part 10, Beuth-Verlag, Berlin 2009.
  • 36. Ministry of the Environment of Czech Republic. National Greenhouse Gas Inventory Report of the Czech Republic (reported inventories 1990–2018), table 3-11, 2020. Available online: https://unfccc.int/sites/default/files/resource/cze-2020-nir-7may20.pdf.
  • 37. International Energy Agency. Czech Republic 2021. Energy Policy Review; International Energy Agency: Paris, France, 2021.
  • 38. Předpis č. 78/2013 Sb.Vyhláška o energetické náročnosti budov, 22.03.2013, Czech Republic. Available online: https://www.zakonyprolidi.cz/cs/2013-78.
  • 39. Österreichisches Institut für Bautechnik: Richtlinie 6 Energieeinsparung und Wärmeschutz, March 2015, Austria. Available online: https://www.oib.or.at/sites/default/files/richtlinie_6_26.03.15.pdf.
  • 40. National Building Code of Finland. Part D3 Energy-Efficiency; 2018, Ministry of the Environment, Helsinki, Finland.
  • 41. International Energy Agency. Czech Republic 2021. Energy Policy Review; International Energy Agency: Paris, France, 2021.
  • 42. M. Haakana, P. Laitila, K. M. Forssell, O. Y. Motiva, „Implementation of the EPBD in Finland”, 2016, The Concerted Action EPBD (CA EPBD). Available online: https://epbd-ca.eu/ca-outcomes/outcomes-2015-2018/book-2018/countries/finlandaccessed 14.09.2022.
  • 43. National Center for Emissions Management and Balancing. Available online: https://www.kobize.pl/pl/fileCategory/id/28/wskazniki-emisyjnosci.
  • 44. IPCC Special Report on Carbon dioxide Capture and Storage. Annex I: Properties of CO2 and Carbon-Based Fuels. Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/srccs_annex1-1.pdf.
  • 45. Calculation Criteria Used In The Sitra Lifestyle Test, SISTRA. 2021. Available online: https://lifestyletest.sitra.fi/.
  • 46. R. Wójcik, „Docieplanie budynków od wewnątrz”, Grupa MEDIUM, Warszawa 2018.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb9cd017-dd06-4f1a-8581-1be6bf1e673d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.