Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
With the advent of social media, the volume of photographs uploaded on the internet has increased exponentially. The task of efficiently recognizing and retrieving human facial images is inevitable and essential at this time. In this work, a feature selection approach for recognizing and retrieving human face images using hybrid cheetah optimization algorithm is proposed. The deep feature extraction from the images is done using deep convolutional neural networks. Hybrid cheetah optimization algorithm, an improvised version of cheetah optimization algorithm fused with genetic algorithm is used, to choose optimum features from the extracted deep features. The chosen features are used for finding the best-matching images from the image database. The image matching is performed by approximate nearest neighbor search for the query image over the image database and similar images are retrieved. By constructing a k-NN graph for the images, the efficiency of image retrieval is enhanced. The proposed system performance is evaluated against benchmark datasets such as LFW, MultiePie, ColorFERET, DigiFace-1M and CelebA. The evaluation results show that the proposed methodology is superior to various existing methodologies.
Rocznik
Tom
Strony
art. no. e148942
Opis fizyczny
Bibliogr 44 poz., rys., tab.
Twórcy
autor
- Department of Computer Science and Engineering, Mepco Schlenk Engineering College, Sivakasi 626005, India
autor
- Department of Computer Science and Engineering, Mepco Schlenk Engineering College, Sivakasi 626005, India
Bibliografia
- [1] R. Kapoor, D. Sharma, and T. Gulati, “State of the art content based image retrieval techniques using deep learning: a survey,” Multimed. Tools Appl., vol. 80, no. 19, pp. 29 561–29 583, 2021, doi: 10.1007/s11042-021-11045-1.
- [2] J. Suresh Kumar and M. C. Vigila S., “A review on content based image retrieval techniques,” in 2023 International Conference on Circuit Power and Computing Technologies (ICCPCT), 2023, pp. 1251–1256, doi: 10.1109/ICCPCT58313.2023.10245360.
- [3] S. Singh and S. Prasad, “Techniques and challenges of face recognition: A critical review,” Procedia Comput. Sci., vol. 143, pp. 536–543, 2018, doi: 10.1016/j.procs.2018.10.427.
- [4] B. Li, “The current situation and potential development of face recognition,” Appl. Comput. Eng., vol. 4, pp. 308–316, 2023, doi: 10.54254/2755-2721/4/20230478.
- [5] R. Szmurło and S. Osowski, “Ensemble of classifiers based on cnn for increasing generalization ability in face image recognition,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 3, p. e141004, 2022, doi: 10.24425/bpasts.2022.141004.
- [6] J. Wang and D. Chen, “A few-shot fine-grained image recognition method,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 1, p. e144584, 2023, doi: 10.24425/bpasts.2023.144584.
- [7] A. Krizhevsky, I. Sutskever, and G.E. Hinton, “Imagenet classification with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6, pp. 84–90, May 2017, doi: 10.1145/3065386.
- [8] M.A. Akbari, M. Zare, R. Azizipanah-abarghooee, S. Mirjalili, and M. Deriche, “The cheetah optimizer: a nature-inspired metaheuristic algorithm for large-scale optimization problems,” Sci. Rep., vol. 12, no. 1, Jun 2022, doi: 10.1038/s41598-022-14338-z.
- [9] J. Naruniec, “A survey on facial features detection,” Int. J. Electron. Telecommun., vol. 56, no. 3, pp. 267–272, 2010, doi: 10.2478/v10177-010-0035-y.
- [10] P. Belhumeur, J. Hespanha, and D. Kriegman, “Eigenfaces vs. fisherfaces: recognition using class specific linear projection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 711–720, Jul. 1997, doi: 10.1109/34.598228.
- [11] V. Purandare and K.T. Talele, “Efficient heterogeneous face recognition using scale invariant feature transform,” in 2014 International Conference on Circuits, Systems, Communication and Information Technology Applications (CSCITA). IEEE, 2014, doi: 10.1109/cscita.2014.6839277.
- [12] S. Gupta, K. Thakur, and M. Kumar, “2d-human face recognition using SIFT and SURF descriptors of face’s feature regions,” Vis. Comput., vol. 37, no. 3, pp. 447–456, 2020, doi: 10.1007/s00371-020-01814-8.
- [13] J. Bobulski, “Multimodal face recognition method with two-dimensional hidden markov model,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 1, pp. 121–128, 2017, doi: 10.1515/bpasts-2017-0015.
- [14] R. Hecht-Nielsen, “Theory of the backpropagation neural network,” vol. 1, 1989, pp. 593–605, doi: 10.1109/IJCNN.1989.118638.
- [15] H.B. Fredj, S. Bouguezzi, and C. Souani, “Face recognition in unconstrained environment with CNN,” Vis. Comput., vol. 37, no. 2, pp. 217–226, 2020, doi: 10.1007/s00371-020-01794-9.
- [16] S. Khan, M.H. Javed, E. Ahmed, S.A.A. Shah, and S.U. Ali, “Facial recognition using convolutional neural networks and implementation on smart glasses,” in 2019 International Conference on Information Science and Communication Technology (ICISCT). IEEE, 2019, doi: 10.1109/cisct.2019.8777442.
- [17] A. Elmahmudi and H. Ugail, “Deep face recognition using imperfect facial data,” Futur. Gener. Comput. Syst., vol. 99, pp. 213–225, 2019, doi: 10.1016/j.future.2019.04.025.
- [18] R. Pati, A.K. Pujari, and P. Gahan, “Face recognition using particle swarm optimization based block ICA,” Multimed. Tools Appl., vol. 80, no. 28-29, pp. 35 685–35 695, Apr. 2021, doi: 10.1007/s11042-021-10792-5.
- [19] H. Zhi and S. Liu, “Face recognition based on genetic algorithm,” J. Vis. Commun. Image Represent., vol. 58, pp. 495–502, Jan. 2019, doi: 10.1016/j.jvcir.2018.12.012.
- [20] P. Annamalai, “Automatic face recognition using enhanced firefly optimization algorithm and deep belief network,” Int. J. Intell. Eng. Syst, vol. 13, no. 5, pp. 19–28, Oct 2020, doi: 10.22266/ijies2020.1031.03.
- [21] T. Kumar, S. Bhushan, and S. Jangra, “An improved biometric fusion system of fingerprint and face using whale optimization,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 1, 2021, doi: 10.14569/ijacsa.2021.0120176.
- [22] H. Sikkandar and R. Thiyagarajan, “Soft biometrics-based face image retrieval using improved grey wolf optimisation,” IET Image Process., vol. 14, no. 3, pp. 451–461, 2020, doi: 10.1049/iet-ipr.2019.0271.
- [23] M. Tubishat, N. Idris, L. Shuib, M.A. Abushariah, and S. Mirjalili, “Improved salp swarm algorithm based on opposition based learning and novel local search algorithm for feature selection,” Expert Syst. Appl., vol. 145, p. 113122, 2020, doi: 10.1016/j.eswa.2019.113122.
- [24] A. Faramarzi, M. Heidarinejad, S. Mirjalili, and A.H. Gandomi, “Marine predators algorithm: A nature-inspired metaheuristic,” Expert Syst. Appl., vol. 152, p. 113377, 2020, doi: 10.1016/j.eswa.2020.113377.
- [25] S. Mirjalili and A. Lewis, “The whale optimization algorithm,” Adv. Eng. Softw., vol. 95, pp. 51–67, 2016, doi: 10.1016/j.advengsoft.2016.01.008.
- [26] M. Tubishat, M. Alswaitti, S. Mirjalili, M.A. Al-Garadi, M.T. Alrashdan, and T.A. Rana, “Dynamic butterfly optimization algorithm for feature selection,” IEEE Access, vol. 8, pp. 194 303–194 314, 2020, doi: 10.1109/access.2020.3033757.
- [27] M. Malkauthekar, “Analysis of euclidean distance and manhattan distance measure in face recognition,” in Third International Conference on Computational Intelligence and Information Technology (CIIT 2013). IET, 2013, pp. 503–507, doi: 10.1049/cp.2013.2636.
- [28] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, and A.Y. Wu, “An optimal algorithm for approximate nearest neighbor searching fixed dimensions,” J. ACM, vol. 45, no. 6, pp. 891–923, 1998, doi: 10.1145/293347.293348.
- [29] W. Li et al., “Approximate nearest neighbor search on high dimensional data — experiments, analyses, and improvement,” IEEE Trans. Knowl. Data Eng., vol. 32, no. 8, pp. 1475–1488, 2020, doi: 10.1109/tkde.2019.2909204.
- [30] X. Xu, C. Li, Y. Wang, and Y. Xia, “Multiattribute approximate nearest neighbor search based on navigable small world graph,” Concurr. Comput. Pract. Exp., vol. 32, no. 24, 2020, doi: 10.1002/cpe.5970.
- [31] C. Fu, C. Xiang, C. Wang, and D. Cai, “Fast approximate nearest neighbor search with the navigating spreading-out graph,” arXiv:1707.00143, 2017, doi: 10.48550/ARXIV.1707.00143.
- [32] LFW Face Database : Main. Labeled-faces-in-the-wild-home. [Online]. Available: http://vis-www.cs.umass.edu/lfw/ (Accessed June-2022).
- [33] The CMU Multi-PIE Face Database. The-multipie-dataset. [Online]. Available: https://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html (Accessed March-2022).
- [34] The color FERET Database, “Colorferet-dataset.” [On-line]. Available: https://www.nist.gov/itl/products-and-services/color-feret-database (Accessed June-2022).
- [35] G. Bae et al., “Digiface-1m: 1 million digital face images for face recognition,” in 2023 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2023, doi: 10.48550/arXiv.2210.02579.
- [36] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” CoRR-arXiv abs/1411.7766, 2014, doi: 10.48550/arXiv.1411.7766.
- [37] Y. Jiang, Z. Huang, X. Pan, C.C. Loy, and Z. Liu, “Talk-to-edit: Fine-grained facial editing via dialog,” CoRR-arXiv abs/2109.04425, 2021, doi: 10.48550/arXiv.2109.04425.
- [38] I. Rish, “An empirical study of the naive bayes classifier,” in IJCAI 2001 workshop on empirical methods in artificial intelligence, vol. 3, no. 22. IBM New York, 2001, pp. 41–46.
- [39] R.F. Rahman and Suharjito, “Crowd face detection with naïve bayes in attendance system using raspberry pi,” E3S Web Conf., vol. 388, p. 02010, 2023, doi: 10.1051/e3sconf/202338802010.
- [40] M. Hearst, S. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Support vector machines,” IEEE Intell. Syst. Appl., vol. 13, no. 4, pp. 18–28, 1998, doi: 10.1109/5254.708428.
- [41] H. V. Nguyen and L. Bai, “Cosine similarity metric learning for face verification,” in Computer Vision – ACCV 2010. Springer Berlin Heidelberg, 2011, pp. 709–720, doi: 10.1007/978-3-642-19309-5_55.
- [42] H. Zhi and S. Liu, “Face recognition based on genetic algorithm,” J. Vis. Commun. Image Represent., vol. 58, pp. 495–502, 2019, doi: 10.1016/j.jvcir.2018.12.012.
- [43] Y. Zhang and L. Yan, “Face recognition algorithm based on particle swarm optimization and image feature compensation,” SoftwareX, vol. 22, p. 101305, 2023, doi: 10.1016/j.softx.2023.101305.
- [44] W. Xie, L. Wang, K. Yu, T. Shi, and W. Li, “Improved multi-layer binary firefly algorithm for optimizing feature selection and classification of microarray data,” Biomed. Signal Process. Control., vol. 79, p. 104080, 2023, doi: 10.1016/j.bspc.2022.104080.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb993b1b-2b70-4d62-89af-e7d823015a64