PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exploitation of spent nickel-metal hydride (Ni-MH) batteries as a source of value-added products

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Spent Nickel–metal hydride batteries can be sources of valuable metals such as nickel, cobalt, manganese, rare earths and toxic chemicals. The recycling of these materials is necessary from both economic and environmental points of view. In this study the nickel is leached in acid solution followed by precipitation and thermal decomposition or by cementation. The affecting parameters such as acid type and concentration, time, temperature and solid/liquid ratio were investigated. The maximum of leached nickel could be obtained in 3M sulfuric acid at 65°C for 60 min with solid-to-liquid ratio of 30 g L-1. The liquid film is a more suitable model for demonstrating the kinetics of the nickel leaching. Thermal decomposition of the precipitated nickel dimethyl-glyoxime was employed in preparation of nickel oxide. Nickel was separated from aqueous solution by cementation on zinc. The cementation process follows pseudo first-order kinetics and diffusion controlling steps. The yield was 91% of the original nickel content.
Rocznik
Strony
95--101
Opis fizyczny
Bibliogr. 27 poz., rys. kolor.
Twórcy
  • Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan 11421, Cairo, Egypt
  • Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan 11421, Cairo, Egypt
Bibliografia
  • ABDEL-RAHMAN H.H., ABDEL-WAHED E.M., 2012. Removal of nickel ions by cementation on zinc from NiSO4 solution in presence of accelerator non-toxic organic compounds. Hydrometallurgy, 129–130, 111-117.
  • ABDEL-KHALEK M.A., EL-MIDANY A.A., 2013. Application of Bacillus subtilis for reducing ash and sulfur In coal. Environ Earth Sci. 70, 753–760 (2013).
  • AGARWAL V., KHALID M.K., PORVALI A., WILSON B.P., LUNDSTROM M., 2019. Recycling of spent Ni-MH batteries: Integration of battery leach solution into primary Ni production using solvent extraction. Sustainable Materials and Technologies, 22, 121.
  • BHATTACHARYYA K.G., GUPTA S.S., 2006. Adsorption of Fe(III) from water by natural & acid activated clays: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Adsorption, 12, 185–204.
  • CALGARO C.O., SCHLEMMER D.F., DA SILVA M.D.C.R., MAZIERO E.V., TANABE E.H., BERTUOL D.A., 2015. Fast copper extraction from printed circuit boards using supercritical carbon dioxide. Waste Manag., 45,289-297.
  • CAYUMIL R., KHANNA R., IKRAM-Ul-HAQ M., RAJARAO R., HILL A., SAHAJWALLA V., 2014. Generation of copper rich metallic phases from waste printed circuit boards, Waste Manage., 34, 1783-1792.
  • CHEN X., ZHOU T., 2014. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries In citric acid media. Waste Manag. Res., 32, 11, 1083-1093.
  • EL-HOSINY F.I., SELIM K.A, ABDEL-KHALEK M.A., OSAMA I., 2018. Physicochemical study of dye removal Rusing electro-coagulation-flotation process. Physicochem. Probl. Miner. Process. 2018, 54, 2, 321–333.
  • FILA D., HUBICIKI Z., KOLODYNSKA D., 2019. Recovery of metals from waste nickel-metal hydride batteries Rusing multifunctional Diphonix resin. Adsorption 25, 367–382.
  • JING-YING L., XIU-LI X., WEN-QUAN L., 2012. Thiourea leaching gold and silver from the printed circuit boardsof waste mobile phones. Waste Manage., 32, 1209-1212.
  • KASPER A.C., BERSELLI G.B.T., FREITAS B.D., TENORIO J.A.S., BERNARDES A.M., VEIT H.M., 2011. Printed wiring boards for mobile phones: characterization and recycling of copper. Waste Manage., 31, 2536-2545.
  • KIM E.Y., KIM M.S., LEE J.C., JEONG J., PANDEY B.D., 2011. Leaching kinetics of copper from waste printed circuit boards by electrogenerated chlorine in HCl solution. Hydrometallurgy, 107, 124-132.
  • KLEINSORGEN K., KOHLER U., BOUVIER A., FOLZER A., 1999. Process for the recovery of metals from used nickel/metal hydride storage batteries. Patent US5858061A United States.
  • KORKMAZ K., ALEMRAJABI M., RASMUSON A., FORSBERG K., 2018. Recoveries of Valuable Metals from Spent Nickel Metal Hydride Vehicle Batteries via Sulfation, Selective Roasting, and Water Leaching. Journal of Sustainable Metallurgy, 4, 3, 313-325.
  • LIN S.L., HUANG K.L., WANG I.C., CHOU I.C., KUO Y.M., HUNG C.H., LIN C., 2015. Characterization of Spent Nickel-Metal Hydride Batteries and a Preliminary Economic Evaluation of the Recovery Processes. Journal of the Air & Waste Management Association, 66, 3.
  • MESBAH Y.I., AHMED N., ALI B.A., ALLAM N.K., 2020. Recycling of Li-Ni-Mn-Co Hydroxide from Spent Batteries to Produce High-Performance Super capacitors with Exceptional Stability. Chem. Electro. Chem., 7, 4, 975-982.
  • PORVALI A., ALTONEN M., OJANEN S., VELAZQUEZ-MARTINEZ O., ERONEN E., LIU F., WILSON B.P., SERNA-GUERREO R., LUNDSTROM M., 2019. Mechanical and hydrometallurgical processes in HCl media for the recycling of valuable metals from Li-ion battery waste. Resources. Conservation and Recycling, 142, 257-266.
  • PORVALI A., OJANEN S., WILSON B.P., SERNA-GUEERRERO R., LUNDSTROM M., 2020. Nickel metal hydrie battery waste: Mechano-hydrometallurgical experimental study on recycling aspects. J. Sustain. Metall. 6, 78–90.
  • PRADHAN S., NAYAK R., MISHRA S., 2021. A review on the recovery of metal values from spent nickel metal hydrie and lithium-ion batteries. Int. J. Environ. Sci. Technol.
  • RINNE M., ELOMAA H., PORVALI A., LUNDSTROM M., 2021. Simulation-based life cycle assessment for hydrometallurgical recycling of mixed LIB and Ni-MH waste. Resources, Conservation and Recycling, 170.
  • SHIN S.M., SHIN D.J., JUNG G.J., KIM Y.H., WANG J.P., 2015. Recovery of electronic powder from spent nickel-metal hydride batteries (Ni-MH). Archives of metallurgy and materials, 60, 2, 1139-1143.
  • STRADA-RUIZ R.H., FLORES-CAMPOS R., GAMEZ-ALTAMIRANO H.A., VELARDE-SANCHEZ E.J., 2016. Separation of the metallic and non-metallic fraction from printed circuit boards employing green technology. J. Hazard. Mater., 311, 91-99.
  • TZANETAKIS N., SCOTT K., 2004. Recycling of nickel–metal hydride batteries: dissolution and solvent extraction of metals. J. of Chemical Technology and Biotechnology, 79, 919–926.
  • VEIT H.M., BERNARDES A.M., FERREIRA J.Z., TENORIO J.A.S., MALFATTI C.F., 2006. Recovery of copper from printed circuit boards scraps by mechanical processing and electrometallurgy. J. Hazard. Mater., B137, 1704-1709.
  • YAMANE L.H., MORAES V.T., ESPINOSA D.C.R., TENORIO J.A.S., 2011. Recycling of WEEE: characterization of spent printed circuit boards from mobile phones and computers. Waste Manage., 31, 2553-2558.
  • YAO E., XU S., ZHAO F., HUANG T., LI H., ZHAO N., YI J., YANG Y., WANG C. 2020. Study on thermal decomposition behavior, gaseous products & kinetic analysis of bis-(dimethylglyoxime) nickel complex using TG-DSCFTIR- MS technique. Catalysts, 10, 331.
  • ZHAO C., ZHANG X., DING J., ZHU Y., 2017. Study on recovery of valuable metals from waste mobile phone PCB particles using liquid-solid fluidization technique. Chem. Eng. J., 311, 217-226.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb93b687-40c8-4f52-8325-5e3fb9e40c09
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.