Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We present the numerical study of hydromagnetic (MHD) flow and heat transfer characte- ristics of a viscous incompressible electrically conducting micropolar fluid in a channel with one wall shrinking and the other at rest in the presence of a transverse applied magnetic field. Different from the classical shooting methodology, we employ a combination of a di- rect and an iterative method (SOR with optimal relaxation parameter) for solving the sparse systems of linear algebraic equations arising from the FD discretization of the linearized self similar nonlinear ODEs. Effects of some physical parameters on the flow and heat transfer are discussed and presented through tables and graphs. The present investigation may be beneficial to the flow and thermal control of polymeric processing.
Czasopismo
Rocznik
Tom
Strony
557--569
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
- Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan, Pakistan
autor
- Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan, Pakistan
Bibliografia
- 1. Ashraf M., Batool K., 2013,MHD flow and heat transfer of a micropolar fluid over a stretchable disk, Journal of Theoretical and Applied Mechanics, 51, 25-38
- 2. Ashraf M., Kamal M.A., Syed K.S., 2009a, Numerical simulation of a micropolar fluid between a porous disk and a non-porous disk, Journal of Applied Mathematics and Modelling, 33, 1933-1943
- 3. Ashraf M., Kamal M.A., Syed K.S., 2009b, Numerical study of asymmetric laminar flow of micropolar fluids in a porous channel, Computers and Fluids, 38, 1895-1902
- 4. Ashraf M., Kamal M.A., Syed K.S., 2011, Numerical simulation of flow of micropolar fluids in a channel with a porous wall, International Journal for Numerical Methods in Fluids, 66, 906-918
- 5. Deuflhard P., 1983, Order and step-size control in extrapolation methods, Numerical Mathematics, 41, 399-422
- 6. Eringen A.C., 1964, Simple micropolar fluids, International Journal of Engineering Science, 2, 205-217
- 7. Hajipour M., Dehkordi A.M., 2012, Transient behavior of fluid flow and heat transfer in vertical channel partially filled with porous medium: Effects of inertial term and viscous dissipation, Energy Conversion and Management, 61, 1-7
- 8. Hoyt J.W., Fabula A.G., 1964, The effect of additives on fluid friction, US Naval Ordinance Test Station Report
- 9. Kelson N.A., Desseaux A., Farrell T.W., 2003, Micropolar flow in a porous channel with high mass transfer, ANZIAM, 44, 479-495
- 10. Lok Y.Y., Ioan P., Chamkha A.J., 2007, Non-orthogonal stagnation point flow of a micropolar fluid, International Journal of Engineering Science, 45, 173-184
- 11. Naccache M.F., Souza P.R., 2011, Heat transfer to non-Newtonian fluids in laminar flow through rectangular ducts, International Journal of Thermal Sciences, 8, 16-25
- 12. Nakamura S., 1991, Applied Numerical Methods with Software, Prentice-Hall, 442-446
- 13. Rawool A.S., Mitra S.K., Kandlikar S.G., 2006, Numerical simulation of flow through microchannels with designed roughness, Microfluidics and Nanofluidics, 2, 215-221
- 14. Roache P.J., Knupp P.M., 1993, Completed Richardson extrapolation, Communications in Numerical Methods in Engineering, 9, 365-374
- 15. Shangjun Y., Kequn Z., Wang W., 2006, Laminar flow of micropolar fluid in rectangular microchannels, Acta Mechanica Sinica, 22, 403-408
- 16. Sutton R.S., Barto A.G., 2008, Exact Navier-Stokes solution for pulsatory viscous channel flow with arbitrary pressure gradient, Journal of Propulsion and Power, 24, 1412-1423
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb92c418-b2f9-47c0-9c76-a4922a05ea5c